967 resultados para Habitat quality assessment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"The Northeastern Illinois Planning Commission's Natural Resources Dept. conducted the lake assessment data collection effort for the six county northeastern Illinois region." -- P. iii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"January 1995."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"IEPA/WPC/84-011." -- Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The target of no-reference (NR) image quality assessment (IQA) is to establish a computational model to predict the visual quality of an image. The existing prominent method is based on natural scene statistics (NSS). It uses the joint and marginal distributions of wavelet coefficients for IQA. However, this method is only applicable to JPEG2000 compressed images. Since the wavelet transform fails to capture the directional information of images, an improved NSS model is established by contourlets. In this paper, the contourlet transform is utilized to NSS of images, and then the relationship of contourlet coefficients is represented by the joint distribution. The statistics of contourlet coefficients are applicable to indicate variation of image quality. In addition, an image-dependent threshold is adopted to reduce the effect of content to the statistical model. Finally, image quality can be evaluated by combining the extracted features in each subband nonlinearly. Our algorithm is trained and tested on the LIVE database II. Experimental results demonstrate that the proposed algorithm is superior to the conventional NSS model and can be applied to different distortions. © 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Video streaming via Transmission Control Protocol (TCP) networks has become a popular and highly demanded service, but its quality assessment in both objective and subjective terms has not been properly addressed. In this paper, based on statistical analysis a full analytic model of a no-reference objective metric, namely pause intensity (PI), for video quality assessment is presented. The model characterizes the video playout buffer behavior in connection with the network performance (throughput) and the video playout rate. This allows for instant quality measurement and control without requiring a reference video. PI specifically addresses the need for assessing the quality issue in terms of the continuity in the playout of TCP streaming videos, which cannot be properly measured by other objective metrics such as peak signal-to-noise-ratio, structural similarity, and buffer underrun or pause frequency. The performance of the analytical model is rigidly verified by simulation results and subjective tests using a range of video clips. It is demonstrated that PI is closely correlated with viewers' opinion scores regardless of the vastly different composition of individual elements, such as pause duration and pause frequency which jointly constitute this new quality metric. It is also shown that the correlation performance of PI is consistent and content independent. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work looks into video quality assessment applied to the field of telecare and proposes an alternative metric to the more traditionally used PSNR based on the requirements of such an application. We show that the Pause Intensity metric introduced in [1] is also relevant and applicable to heterogeneous networks with a wireless last hop connected to a wired TCP backbone. We demonstrate through our emulation testbed that the impairments experienced in such a network architecture are dominated by continuity based impairments rather than artifacts, such as motion drift or blockiness. We also look into the implication of using Pause Intensity as a metric in terms of the overall video latency, which is potentially problematic should the video be sent and acted upon in real-time. We conclude that Pause Intensity may be used alongside the video characteristics which have been suggested as a measure of the overall video quality. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a full analytic model for pause intensity (PI), a no-reference metric for video quality assessment, is presented. The model is built upon the video play out buffer behavior at the client side and also encompasses the characteristics of a TCP network. Video streaming via TCP produces impairments in play continuity, which are not typically reflected in current objective metrics such as PSNR and SSIM. Recently the buffer under run frequency/probability has been used to characterize the buffer behavior and as a measurement for performance optimization. But we show, using subjective testing, that under run frequency cannot reflect the viewers' quality of experience for TCP based streaming. We also demonstrate that PI is a comprehensive metric made up of a combination of phenomena observed in the play out buffer. The analytical model in this work is verified with simulations carried out on ns-2, showing that the two results are closely matched. The effectiveness of the PI metric has also been proved by subjective testing on a range of video clips, where PI values exhibit a good correlation with the viewers' opinion scores. © 2012 IEEE.