139 resultados para HYDROLASES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mucolipidosis, type IV (ML-IV) is an autosomal recessive storage disease that is characterized by lysosomal accumulation of sphingolipids, phospholipids, and acid mucopolysaccharides. Unlike most other storage diseases, the lysosomal hydrolases participating in the catabolism of the stored molecules appear to be normal. In the present study, we examined the hypothesis that the ML-IV phenotype might arise from abnormal transport along the lysosomal pathway. By using various markers for endocytosis, we found that plasma membrane internalization and recycling were nearly identical in ML-IV and normal fibroblasts. A fluorescent analog of lactosylceramide (LacCer) was used to study plasma membrane lipid internalization and subsequent transport. Lipid internalization at 19°C was similar in both cell types; however, 40–60 min after raising the temperature to 37°C, the fluorescent lipid accumulated in the lysosomes of ML-IV cells but was mainly concentrated at the Golgi complex of normal fibroblasts. Biochemical studies demonstrated that at these time points, hydrolysis of the lipid analog was minimal (∼7%) in both cell types. A fluorescence ratio imaging assay was developed to monitor accumulation of fluorescent LacCer in the lysosomes and showed that the apparent concentration of the lipid increased more rapidly and to a greater extent in ML-IV cells than in normal fibroblasts. By 60 min, LacCer apparently decreased in the lysosomes of normal fibroblasts but not in ML-IV cells, suggesting that lipid efflux from the lysosomes was also impaired. These results demonstrate that there is a defect in ML-IV fibroblasts that affects membrane sorting and/or late steps of endocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Function of the maize (Zea mays) gene sugary1 (su1) is required for normal starch biosynthesis in endosperm. Homozygous su1- mutant endosperms accumulate a highly branched polysaccharide, phytoglycogen, at the expense of the normal branched component of starch, amylopectin. These data suggest that both branched polysaccharides share a common precursor, and that the product of the su1 gene, designated SU1, participates in kernel starch biosynthesis. SU1 is similar in sequence to α-(1→6) glucan hydrolases (starch-debranching enzymes [DBEs]). Specific antibodies were produced and used to demonstrate that SU1 is a 79-kD protein that accumulates in endosperm coincident with the time of starch biosynthesis. Nearly full-length SU1 was expressed in Escherichia coli and purified to apparent homogeneity. Two biochemical assays confirmed that SU1 hydrolyzes α-(1→6) linkages in branched polysaccharides. Determination of the specific activity of SU1 toward various substrates enabled its classification as an isoamylase. Previous studies had shown, however, that su1- mutant endosperms are deficient in a different type of DBE, a pullulanase (or R enzyme). Immunoblot analyses revealed that both SU1 and a protein detected by antibodies specific for the rice (Oryza sativa) R enzyme are missing from su1- mutant kernels. These data support the hypothesis that DBEs are directly involved in starch biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronatine is a phytotoxin produced by some plant-pathogenic bacteria. It has been shown that coronatine mimics the action of methyl jasmonate (MeJA) in plants. MeJA is a plant-signaling molecule involved in stress responses such as wounding and pathogen attack. In Arabidopsis thaliana, MeJA is essential for pollen grain development. The coi1 (for coronatine-insensitive) mutant of Arabidopsis, which is insensitive to coronatine and MeJA, produces sterile male flowers and shows an altered response to wounding. When the differential display technique was used, a message that was rapidly induced by coronatine in wild-type plants but not in coi1 was identified and the corresponding cDNA was cloned. The coronatine-induced gene ATHCOR1 (for A. thaliana coronatine-induced) is expressed in seedlings, mature leaves, flowers, and siliques but was not detected in roots. The expression of this gene was dramatically reduced in coi1 plants, indicating that COI1 affects its expression. ATHCOR1 was rapidly induced by MeJA and wounding in wild-type plants. The sequence of ATHCOR1 shows no strong homology to known proteins. However, the predicted polypeptide contains a conserved amino acid sequence present in several bacterial, animal, and plant hydrolases and includes a potential ATP/GTP-binding-site motif (P-loop).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A crucial step in lysosomal biogenesis is catalyzed by “uncovering” enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: 488YHPL and C-terminal 511NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a conserved family of bacterial gene products that includes the VirB1 virulence factor encoded by tumor-inducing plasmids of Agrobacterium spp., proteins involved in conjugative DNA transfer of broad-host-range bacterial plasmids, and gene products that may be involved in invasion by Shigella spp. and Salmonella enterica. Sequence analysis and structural modeling show that the proteins in this group are related to chicken egg white lysozyme and are likely to adopt a lysozyme-like structural fold. Based on their similarity to lysozyme, we predict that these proteins have glycosidase activity. Iterative data base searches with three conserved sequence motifs from this protein family detect a more distant relationship to bacterial and bacteriophage lytic transglycosylases, and goose egg white lysozyme. Two acidic residues in the VirB1 protein of Agrobacterium tumefaciens form a putative catalytic dyad, Each of these residues was changed into the corresponding amide by site-directed mutagenesis. Strains of A. tumefaciens that express mutated VirB1 proteins have a significantly reduced virulence. We hypothesize that many bacterial proteins involved in export of macromolecules belong to a widespread class of hydrolases and cleave beta-1,4-glycosidic bonds as part of their function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fructans play an important role in assimilate partitioning and possibly in stress tolerance in many plant families. Sucrose:fructan 6-fructosyltransferase (6-SFT), an enzyme catalyzing the formation and extension of beta-2,6-linked fructans typical of grasses, was purified from barley (Hordeum vulgare L.). It occurred in two closely similar isoforms with indistinguishable catalytic properties, both consisting of two subunits with apparent masses of 49 and 23 kDa. Oligonucleotides, designed according to the sequences of tryptic peptides from the large subunit, were used to amplify corresponding sequences from barley cDNA. The main fragment generated was cloned and used to screen a barley cDNA expression library. The longest cDNA obtained was transiently expressed in Nicotiana plumbaginifolia protoplasts and shown to encode a functional 6-SFT. The deduced amino acid sequence of the cDNA comprises both subunits of 6-SFT. It has high similarity to plant invertases and other beta-fructosyl hydrolases but only little to bacterial fructosyltransferases catalyzing the same type of reaction as 6-SFT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Brasil possui uma posição privilegiada quando se refere à produção de etanol. Por questões históricas e geográficas o país é responsável por mais de 30 % da produção mundial de etanol, com uma produção nacional de mais de 28 bilhões de litros em 2014. Para maximizar o rendimento desse processo, está em desenvolvimento a tecnologia associada ao etanol de segunda geração ou etanol lignocelulósico. Os principais desafios desta tecnologia são: melhorar a eficiência de conversão do substrato em produto e a produção em grande escala utilizando substratos de baixo custo. Com o objetivo de melhorar a eficiência do processo de conversão foram estudadas proteínas auxiliares (expansinas) que, em conjunto com celulases, melhoram a despolimerização de biomassa lignocelulósica em açúcares fermentescíveis. Além disso, realizou-se também a caracterização de enzimas ativas de carboidratos (CAZymes) de origem termofílica do organismo Thermogemmatispora sp. T81, devido a capacidade que estas proteínas apresentam de manter a atividade e conformação estrutural em altas temperaturas por um prolongado período de tempo. A partir de análises utilizando bioinformática, os genes que codificam para expansinas de Xanthomonas campestris, Bacillus licheniformis e Trichoderma reesei foram clonados e expressos em E. coli, e seus produtos gênicos (as expansinas) tiveram seus índices de sinergismo (devido atuação conjunta com coquetéis comerciais) e atividade catalítica determinados. Adicionalmente, dispondo de alinhamentos estruturais, foi proposto um mecanismo hidrolítico para elas. Em relação à bactéria Thermogemmatispora sp. T81, foram realizadas análises genômicas e proteômicas, a fim de selecionar enzimas superexpressas em meio celulósico. Seus genes foram clonados heterologamente em E. coli e o produto de expressão caracterizado bioquimicamente (cromatografia, ensaios de atividade e perfil de hidrólise) e estruturalmente (SAXS e dicroísmo circular). Os índices de sinergismo determinados foram de 2,47; 1,96 e 2,44 para as expansinas de Xanthomonas campestris, Bacillus licheniformis e Trichoderma reesei, respectivamente. A partir dos alinhamentos estruturais foi proposto a díade Asp/Glu como sitio catalítico em expansinas. As análises de proteômica possibilitaram a seleção de quatro alvos de clonagem, por apresentarem alto índice de expressão quando a bactéria foi cultivada em meio celulósico. Estas proteínas foram caracterizadas quanto a atividade e apresentaram um perfil comum: temperatura ótima de ação (de 70 a 75 °C), pH ótimo de 5, e hidrolisam preferencialmente substratos hemicelulósicos (xilano). A porcentagem de estruturais secundárias das proteínas em estudo foram confirmadas com predições teóricas ao se utilizar a técnica de dicroísmo circular. Desta maneira, os objetivos iniciais propostos neste projeto foram concluídos com a determinação do grau de sinergismo das proteínas expansinas em estudo e a proposição de um mecanismo de hidrólise para as mesmas, considerando que tais proteínas por mais de 20 anos tiveram sua atividade definida exclusivamente como acessória. Além disso, este estudo contribui com a identificação e seleção de genes para CAZymes termofilícas com aplicação biotecnológica devido às propriedades termoestáveis apresentadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pochonia chlamydosporia is a worldwide-distributed soil fungus with a great capacity to infect and destroy the eggs and kill females of plant-parasitic nematodes. Additionally, it has the ability to colonize endophytically roots of economically-important crop plants, thereby promoting their growth and eliciting plant defenses. This multitrophic behavior makes P. chlamydosporia a potentially useful tool for sustainable agriculture approaches. We sequenced and assembled ∼41 Mb of P. chlamydosporia genomic DNA and predicted 12,122 gene models, of which many were homologous to genes of fungal pathogens of invertebrates and fungal plant pathogens. Predicted genes (65%) were functionally annotated according to Gene Ontology, and 16% of them found to share homology with genes in the Pathogen Host Interactions (PHI) database. The genome of this fungus is highly enriched in genes encoding hydrolytic enzymes, such as proteases, glycoside hydrolases and carbohydrate esterases. We used RNA-Seq technology in order to identify the genes expressed during endophytic behavior of P. chlamydosporia when colonizing barley roots. Functional annotation of these genes showed that hydrolytic enzymes and transporters are expressed during endophytism. This structural and functional analysis of the P. chlamydosporia genome provides a starting point for understanding the molecular mechanisms involved in the multitrophic lifestyle of this fungus. The genomic information provided here should also prove useful for enhancing the capabilities of this fungus as a biocontrol agent of plant-parasitic nematodes and as a plant growth-promoting organism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-04

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hookworms are voracious blood-feeders. The cloning and functional expression of an aspartic protease, Na-APR-2, from the human hookworm Necator americanus are described here. Na-APR-2 is more similar to a family of nematode-specific, aspartic proteases than it is to cathepsin D or pepsin, and the term nemepsins for members of this family of nematode-specific hydrolases is proposed. Na-apr-2 mRNA was detected in blood-feeding, developmental stages only of N. americanus, and the protease was expressed in the intestinal lumen, amphids, and excretory glands. Recombinant Na-APR-2 cleaved human hemoglobin (Hb) and serum proteins almost twice as efficiently as the orthologous substrates from the nonpermissive dog host. Moreover, only 25% of the Na-APR-2 cleavage sites within human Hb were shared with those generated by the related N. americanus cathepsin D, Na-APR-1. Antiserum against Na-APR-2 inhibited migration of 50% of third-stage N. americanus larvae through skin, which suggests that aspartic proteases might be effective vaccines against human hookworm disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55 Angstrom and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases. (C) 2004 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane- 1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species. © 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. Methods and Results: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other Gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. Conclusions: AlbF is the first apparent single-component antibiotic-specific efflux pump from a Gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. Significance and Impact of the Study: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to produce both adenosine and L-homocysteine and is a feedback inhibitor of S-adenosyl- L-methionine (SAM). Nucleoside analogues bearing an alkenyl or fluoroalkenyl chain between sulfur and C5' utilizing Negishi coupling reactions were synthesized. Palladium-catalyzed cross-coupling between the 5'-deoxy-5'-(iodomethylene) nucleosides and alkylzinc bromides gives analogues with the alkenyl unit. Palladium-catalyzed selective monoalkylation of 5'-(bromofluoromethylene)-5'-deoxy-adenosine with alkylzinc bromide afford adenosylhomocysteine analogues with a 6'-(fluoro)vinyl motif. The vinylic adenine nucleosides produced time-dependent inactivation of the S-adenosyl-L-homocysteine hydrolases. Stannydesulfonylation reaction is a critical step in the synthesis of E-fluorovinyl cytidine (Tezacitabine) a ribonucleoside reductase inhibitor with a potent anticancer activity. The synthesis involves the removal of the sulfonyl group by a radical-mediated stannyldesulfonylation reaction using tributyltin hydride. In order to eliminate the toxicity of tin, I developed a radical-mediated germyldesulonylation utilizing less toxic germane hydrides. Treatment of the protected (E)-5'-deoxy-5'-[(p-toluenesulfonyl)-methylene]uridine and adenosine derivatives with tributyl- or triphenylgermane hydride effected radical-mediated germyldesulfonylations to give 5'-(tributyl- or triphenylgermyl)methylene-5'-deoxynucleoside derivatives as single (E)-isomers. Analogous treatment of 2'-deoxy-2'-[(phenylsulfonyl)methylene]uridine with Ph3GeH afforded the corresponding vinyl triphenylgermane product. Stereoselective halodegermylation of the (E)-5'-(tributylgermyl)-methylene-5'-deoxy nucleosides with NIS or NBS provided the Wittig-type (E)-5'-deoxy-5'-(halomethylene) nucleosides quantitatively. Radical-mediated thiodesulfonylation of the readily available vinyl and (α-fluoro) vinyl sulfones with aryl thiols in organic or aqueous medium to provide a bench and environmentally friendly protocol to access (α-fluoro)vinyl sulfides were developed. Methylation of the vinyl or (α-fluoro)vinyl phenyl sulfide gave access to the corresponding vinyl or (α-fluoro)vinyl sulfonium salts. These sulfonium ions were tested as possible methyl group donors during reactions with thiols, phenols or amino groups which are commonly present in natural amino acids.