717 resultados para HSV TK
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as E-f, the fibroblast resting-membrane potential, the fibroblast conductance G(f), and the MF gap-junctional coupling G(gap). Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as G(gap), G(f), and E-f, and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of G(gap), for zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of G(gap), and, eventually, we observe that conduction failure occurs for low values of G(gap). In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling G(gap) or E-f. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.
Resumo:
There is a drop in the flutter boundary of an aeroelastic system placed in a transonic flow due to compressibility effects and is known as the transonic dip. Viscous effects can shift the lo-cation of the shock and depending on the shock strength the boundary layer may separate leading to changes in the flutter speed. An unsteady Euler flow solver coupled with the structural dynamic equations is used to understand the effect of shock on the transonic dip. The effect of various system parameters such as mass ratio, location of the center of mass, position of the elastic axis, ratio of uncoupled natural frequencies in heave and pitch are also studied. Steady turbulent flow results are presented to demonstrate the effect of viscosity on the location and strength of the shock.
Resumo:
Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
Formal synthesis, of an actin binding macrolide rhizopodin was achieved in 19 longest linear steps. The key features of the synthesis include a stereoselective Mukaiyama aldol reaction, dual role of a Nagao auxiliary (first, as a chiral auxiliary of choice for installing hydroxy centers and, later, as an acylating agent to form an amide bond with an amino alcohol), late stage oxazole formation, and Stille coupling reactions.
Controlling phase separation in La5/8-yPryCa3/8MnO3 (y=0.45) epitaxial thin films by strain disorder
Resumo:
Present study reveals that the length-scale of phase separation in La5/8-yPryCa3/8MnO3 thin films can be controlled by strain disorder invoked during the growth and relaxation process of film. Strain disorder provides an additional degree of freedom to tune colossal magnetoresistance. Magneto-transport measurements following cooling and heating in unequal fields protocol demonstrate that coherent strain stabilizes antiferromagnetic insulating phase, while strain disorder favors ferromagnetic metallic phase. Compared to bulk, antiferromagnetic-insulating phase freezes at lower temperatures in strain disordered films. Raman spectroscopy confirms the coexistence of charge-ordered-insulating and ferromagnetic-metallic phases which are structurally dissimilar and possess P2(1)/m and R-3C like symmetries, respectively. (C) 2015 AIP Publishing LLC.
Resumo:
Resumen: La producción de espárragos en Argentina está caracterizada por una elevada estacionalidad concentrada en el periodo octubre-diciembre, por lo que el empleo de invernaderos brinda la posibilidad de ampliar el calendario de oferta, anticipando la entrada en producción. Con el objetivo de evaluar el rendimiento de primicia de diferentes híbridos de espárrago verde, se realizó un ensayo en invernadero con ocho híbridos, en UCA Buenos Aires, iniciado el 15/11/2006, mediante plantines de 100 días a 1m*0,3m. Se evaluaron los siguientes genotipos: Italo, Zeno, Eros, Ercole, H-668, Marte, y Giove, de origen italiano, y UC-157 de origen americano, como testigo por ser el tradicionalmente cultivado en Argentina. Se evaluaron 22 cosechas, con una frecuencia de día por medio, del 17/08/2011-25/10/2011. Se estudiaron diferencias en kg totales y comerciales (PFT y PFC), Nº turiones totales y comerciales/ha (NTT y NTC) y distribución de calibres (DC): Jumbo (J), Extra-Large (XL), Large (L), Medium (M), Small (S) y Asparagina (A). Se efectuó un análisis multifactor ANOVA LSD test (P>0.05). En promedio se obtuvieron: PFT: 17053; PFC: 7904 kg.ha-1; NTT: 670566 y NTC: 520938 turiones.ha-1. Se destacaron: en PFT: Italo: 29458a, Zeno: 23056b, Giove: 23034b y H-668: 18568bc; en PFC: Italo: 14850a, Giove: 9856b, Zeno: 9130bc y H-668: 8228bcd; en NTT: Italo: 842512a, H-668: 754512a, Giove: 715000b y Eros: 707498b; en NTC: Italo: 844998a, H-668: 667502b y Eros: 542498bc y en DC: en J: Italoa, Gioveb, Zenobc y UC-157bcd; en XL: Italoa, Zenoab y Gioveb; en L: Giovea, Italoa, Zenoab, H-668abc y UC-157abc; en M: Italoa, H-668ab y Erosab; en S: H-668a, Erosa e Italoab y en A: H-668a y Marteab. Por lo expuesto resulta alentadora la productividad de Italo, Giove, Zeno y H-668 para producción de espárrago verde de primicia en invernadero.