894 resultados para HPC parallel computer architecture queues fault tolerance programmability ADAM
Resumo:
The design of fault tolerant systems is gaining importance in large domains of embedded applications where design constrains are as important as reliability. New software techniques, based on selective application of redundancy, have shown remarkable fault coverage with reduced costs and overheads. However, the large number of different solutions provided by these techniques, and the costly process to assess their reliability, make the design space exploration a very difficult and time-consuming task. This paper proposes the integration of a multi-objective optimization tool with a software hardening environment to perform an automatic design space exploration in the search for the best trade-offs between reliability, cost, and performance. The first tool is commanded by a genetic algorithm which can simultaneously fulfill many design goals thanks to the use of the NSGA-II multi-objective algorithm. The second is a compiler-based infrastructure that automatically produces selective protected (hardened) versions of the software and generates accurate overhead reports and fault coverage estimations. The advantages of our proposal are illustrated by means of a complex and detailed case study involving a typical embedded application, the AES (Advanced Encryption Standard).
Resumo:
Bibliography: p. 68-71.
Resumo:
"This report reproduces a thesis of the same title submitted to the Department of Electrical Engineering, Massachusetts Institute of Technology, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, May 1971."--p. 3
Resumo:
This study identifies lineaments that indicate fault activity and strengthens previous interpretations of structures within the eastern extent of the Seattle Fault zone in Bellevue, WA. My investigation has compiled geotechnical subsurface data, high-resolution LiDAR imagery, and ground-penetrating radar to produce strip log sections transecting identified lineaments and depth-to-bedrock maps exposing fault structure. My work incorporates field investigation, multiple publicly available datasets, and subsurface modeling. My results include a map showing twenty-eight identified surface lineaments, five strip-log sections, and interpolated depth-to-bedrock and minimum-depth-to-bedrock maps. Several lineaments identified in the minimum-depth-to-bedrock raster are parallel to the Seattle Fault zone and suggest the presence of small splay faults beneath east Bellevue. These results strengthen previous interpretations of seismic profile data located in the study area. Another lineament identified in the minimum-depth-to-bedrock raster suggest an unmapped tear fault accommodating differential offset along fault strike between Mercer Island and Bellevue. This work also demonstrates the utility of publicly available datasets such as geotechnical subsurface explorations and LiDAR imagery in supplementing geologic investigations in the eastern extent of the Seattle Fault zone.
Resumo:
Context-aware systems represent extremely complex and heterogeneous distributed systems, composed of sensors, actuators, application components, and a variety of context processing components that manage the flow of context information between the sensors/actuators and applications. The need for middleware to seamlessly bind these components together is well recognised. Numerous attempts to build middleware or infrastructure for context-aware systems have been made, but these have provided only partial solutions; for instance, most have not adequately addressed issues such as mobility, fault tolerance or privacy. One of the goals of this paper is to provide an analysis of the requirements of a middleware for context-aware systems, drawing from both traditional distributed system goals and our experiences with developing context-aware applications. The paper also provides a critical review of several middleware solutions, followed by a comprehensive discussion of our own PACE middleware. Finally, it provides a comparison of our solution with the previous work, highlighting both the advantages of our middleware and important topics for future research.
Resumo:
The XSophe computer simulation software suite consisting of a daemon, the XSophe interface and the computational program Sophe is a state of the art package for the simulation of electron paramagnetic resonance spectra. The Sophe program performs the computer simulation and includes a number of new technologies including; the SOPHE partition and interpolation schemes, a field segmentation algorithm, homotopy, parallelisation and spectral optimisation. The SOPHE partition and interpolation scheme along with a field segmentation algorithm greatly increases the speed of simulations for most systems. Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence tracing transitions in the presence of energy level anticrossings and looping transitions and allowing computer simulations in frequency space. Recent enhancements to Sophe include the generalised treatment of distributions of orientational parameters, termed the mosaic misorientation linewidth model and a faster more efficient algorithm for the calculation of resonant field positions and transition probabilities. For complex systems the parallelisation enables the simulation of these systems on a parallel computer and the optimisation algorithms in the suite provide the experimentalist with the possibility of finding the spin Hamiltonian parameters in a systematic manner rather than a trial-and-error process. The XSophe software suite has been used to simulate multifrequency EPR spectra (200 MHz to 6 00 GHz) from isolated spin systems (S > ~½) and coupled centres (Si, Sj _> I/2). Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K.E.; Burrage, K.; Hanson, G.R."XSophe, a Computer Simulation Software Suite for the Analysis of Electron Paramagnetic Resonance Spectra", 1999, Mol. Phys. Rep., 26, 60-84.
Resumo:
Retrieving large amounts of information over wide area networks, including the Internet, is problematic due to issues arising from latency of response, lack of direct memory access to data serving resources, and fault tolerance. This paper describes a design pattern for solving the issues of handling results from queries that return large amounts of data. Typically these queries would be made by a client process across a wide area network (or Internet), with one or more middle-tiers, to a relational database residing on a remote server. The solution involves implementing a combination of data retrieval strategies, including the use of iterators for traversing data sets and providing an appropriate level of abstraction to the client, double-buffering of data subsets, multi-threaded data retrieval, and query slicing. This design has recently been implemented and incorporated into the framework of a commercial software product developed at Oracle Corporation.
Resumo:
Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.
Resumo:
The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.
Resumo:
The paper describes the architecture of SCIT - supercomputer system of cluster type and the base architecture features used during this research project. This supercomputer system is put into research operation in Glushkov Institute of Cybernetics NAS of Ukraine from the early 2006 year. The paper may be useful for those scientists and engineers that are practically engaged in a cluster supercomputer systems design, integration and services.
Resumo:
The paper describes cluster management software and hardware of SCIT supercomputer clusters built in Glushkov Institute of Cybernetics NAS of Ukraine. The paper shows the performance results received on systems that were built and the specific means used to fulfil the goal of performance increase. It should be useful for those scientists and engineers that are practically engaged in a cluster supercomputer systems design, integration and services.
Resumo:
This paper describes a PC-based mainframe computer emulator called VisibleZ and its use in teaching mainframe Computer Organization and Assembly Programming classes. VisibleZ models IBM’s z/Architecture and allows direct interpretation of mainframe assembly language object code in a graphical user interface environment that was developed in Java. The VisibleZ emulator acts as an interactive visualization tool to simulate enterprise computer architecture. The provided architectural components include main storage, CPU, registers, Program Status Word (PSW), and I/O Channels. Particular attention is given to providing visual clues to the user by color-coding screen components, machine instruction execution, and animation of the machine architecture components. Students interact with VisibleZ by executing machine instructions in a step-by-step mode, simultaneously observing the contents of memory, registers, and changes in the PSW during the fetch-decode-execute machine instruction cycle. The object-oriented design and implementation of VisibleZ allows students to develop their own instruction semantics by coding Java for existing specific z/Architecture machine instructions or design and implement new machine instructions. The use of VisibleZ in lectures, labs, and assignments is described in the paper and supported by a website that hosts an extensive collection of related materials. VisibleZ has been proven a useful tool in mainframe Assembly Language Programming and Computer Organization classes. Using VisibleZ, students develop a better understanding of mainframe concepts, components, and how the mainframe computer works. ACM Computing Classification System (1998): C.0, K.3.2.
Resumo:
Switched reluctance motor (SRM) drives are one competitive technology for traction motor drives. This paper proposes a novel and flexible SRM fault-tolerant topology with fault diagnosis, fault tolerance, and advanced control functions. The converter is composed of a single-phase bridge and a relay network, based on the traditional asymmetrical half-bridge driving topology. When the SRM-driving system is subjected to fault conditions including open-circuit and short-circuit faults, the proposed converter starts its fault-diagnosis procedure to locate the fault. Based on the relay network, the faulty part can be bypassed by the single-phase bridge arm, while the single-phase bridge arm and the healthy part of the converter can form a fault-tolerant topology to sustain the driving operation. A fault-tolerant control strategy is developed to decrease the influence of the fault. Furthermore, the proposed fault-tolerant strategy can be applied to three-phase 12/8 SRM and four-phase 8/6 SRM. Simulation results in MATLAB/Simulink and experiments on a three-phase 12/8 SRM and a four-phase 8/6 SRM validate the effectiveness of the proposed strategy, which may have significant economic implications in traction drive systems.