967 resultados para HEAT-SHOCK PROTEIN-25


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase (gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30degreesC to 45degreesC). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans-acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high percentage of oesophageal adenocarcinomas show an aggressive clinical behaviour with a significant resistance to chemotherapy. Heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) are molecular chaperones that play an important role in tumour biology. Recently, novel therapeutic approaches targeting HSP90/GRP94 have been introduced for treating cancer. We performed a comprehensive investigation of HSP and GRP expression including HSP27, phosphorylated (p)-HSP27((Ser15)), p-HSP27((Ser78)), p-HSP27((Ser82)), HSP60, HSP70, HSP90, GRP78 and GRP94 in 92 primary resected oesophageal adenocarcinomas by using reverse phase protein arrays (RPPA), immunohistochemistry (IHC) and real-time quantitative RT-PCR (qPCR). Results were correlated with pathologic features and survival. HSP/GRP protein and mRNA expression was detected in all tumours at various levels. Unsupervised hierarchical clustering showed two distinct groups of tumours with specific protein expression patterns: The hallmark of the first group was a high expression of p-HSP27((Ser15, Ser78, Ser82)) and low expression of GRP78, GRP94 and HSP60. The second group showed the inverse pattern with low p-HSP27 and high GRP78, GRP94 and HSP60 expression. The clinical outcome for patients from the first group was significantly improved compared to patients from the second group, both in univariate analysis (p = 0.015) and multivariate analysis (p = 0.029). Interestingly, these two groups could not be distinguished by immunohistochemistry or qPCR analysis. In summary, two distinct and prognostic relevant HSP/GRP protein expression patterns in adenocarcinomas of the oesophagus were detected by RPPA. Our approach may be helpful for identifying candidates for specific HSP/GRP-targeted therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Oesophageal adenocarcinomas often show resistances to chemotherapy (CTX), therefore, it would be of high interest to better understand the mechanisms of resistance. We examined the expression of heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) in pretherapeutic biopsies of oesophageal adenocarcinomas to assess their potential role in CTX response. METHODS Ninety biopsies of locally advanced adenocarcinomas before platin/5-fluorouracil (FU)-based CTX were investigated by reverse phase protein arrays (RPPAs), immunohistochemistry (IHC) and quantitative RT-PCR. RESULTS CTX response strongly correlated with survival (P=0.001). Two groups of tumours with specific protein expression patterns were identified by RPPA: Group A was characterised by low expression of HSP90, HSP27 and p-HSP27((Ser15, Ser78, Ser82)) and high expression of GRP78, GRP94, HSP70 and HSP60; Group B exhibited the inverse pattern. Tumours of Group A were more likely to respond to CTX, resulting in histopathological tumour regression (P=0.041) and post-therapeutic down-categorisation from cT3 to ypT0-T2 (P=0.040). High HSP60 protein (IHC) and mRNA expression were also associated with tumour down-categorisation (P=0.016 and P=0.004). CONCLUSION Our findings may enhance the understanding of CTX response mechanisms, might be helpful to predict CTX response and might have translational relevance as they highlight the role of potentially targetable cellular stress proteins in the context of CTX response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TFIIH has been implicated in several fundamental cellular processes, including DNA repair, cell cycle progression, and transcription. In transcription, the helicase activity of TFIIH functions to melt promoter DNA; however, the in vivo function of the Cdk7 kinase subunit of TFIIH, which has been hypothesized to be involved in RNA polymerase II (Pol II) phosphorylation, is not clearly understood. Using temperature-sensitive and null alleles of cdk7, we have examined the role of Cdk7 in the activation of Drosophila heat shock genes. Several in vivo approaches, including polytene chromosome immunofluorescence, nuclear run-on assays, and, in particular, a protein-DNA cross-linking assay customized for adults, revealed that Cdk7 kinase activity is required for full activation of heat shock genes, promoter-proximal Pol II pausing, and Pol II-dependent chromatin decondensation. The requirement for Cdk7 occurs very early in the transcription cycle. Furthermore, we provide evidence that TFIIH associates with the elongation complex much longer than previously suspected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight {HSPs} families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the {HSP60} family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells govern their activities and modulate their interactions with the environment to achieve homeostasis. The heat shock response (HSR) is one of the most well studied fundamental cellular responses to environmental and physiological challenges, resulting in rapid synthesis of heat shock proteins (HSPs), which serve to protect cellular constituents from the deleterious effects of stress. In addition to its role in cytoprotection, the HSR also influences lifespan and is associated with a variety of human diseases including cancer, aging and neurodegenerative disorders. In most eukaryotes, the HSR is primarily mediated by the highly conserved transcription factor HSF1, which recognizes target hsp genes by binding to heat shock elements (HSEs) in their promoters. In recent years, significant efforts have been made to identify small molecules as potential pharmacological activators of HSF1 that could be used for therapeutic benefit in the treatment of human diseases relevant to protein conformation. However, the detailed mechanisms through which these molecules drive HSR activation remain unclear. In this work, I utilized the baker's yeast Saccharomyces cerevisiae as a model system to identify a group of thiol-reactive molecules including oxidants, transition metals and metalloids, and electrophiles, as potent activators of yeast Hsf1. Using an artificial HSE-lacZ reporter and the glucocorticoid receptor system (GR), these diverse thiol-reactive compounds are shown to activate Hsf1 and inhibit Hsp90 chaperone complex activity in a reciprocal, dose-dependent manner. To further understand whether cells sense these reactive compounds through accumulation of unfolded proteins, the proline analog azetidine-2-carboxylic acid (AZC) and protein cross-linker dithiobis(succinimidyl propionate) (DSP) were used to force misfolding of nascent polypeptides and existing cytosolic proteins, respectively. Both unfolding reagents display kinetic HSP induction profiles dissimilar to those generated by thiol-reactive compounds. Moreover, AZC treatment leads to significant cytotoxicity, which is not observed in the presence of the thiol-reactive compounds at the concentrations sufficient to induce Hsf1. Additionally, DSP treatment has little to no effect on Hsp90 functions. Together with the ultracentrifugation analysis of cell lysates that detected no insoluble protein aggregates, my data suggest that at concentrations sufficient to induce Hsf1, thiol-reactive compounds do not induce the HSR via a mechanism based on accumulation of unfolded cytosolic proteins. Another possibility is that thiol-reactive compounds may influence aspects of the protein quality control system such as the ubiquitin-proteasome system (UPS). To address this hypothesis, β-galactosidase reporter fusions were used as model substrates to demonstrate that thiol-reactive compounds do not inhibit ubiquitin activating enzymes (E1) or proteasome activity. Therefore, thiol-reactive compounds do not activate the HSR by inhibiting UPS-dependent protein degradation. I therefore hypothesized that these molecules may directly inactivate protein chaperones, known as repressors of Hsf1. To address this possibility, a thiol-reactive biotin probe was used to demonstrate in vitro that the yeast cytosolic Hsp70 Ssa1, which partners with Hsp90 to repress Hsf1, is specifically modified. Strikingly, mutation of conserved cysteine residues in Ssa1 renders cells insensitive to Hsf1 activation by cadmium and celastrol but not by heat shock. Conversely, substitution with the sulfinic acid and steric bulk mimic aspartic acid led to constitutive activation of Hsf1. Cysteine 303, located in the nucleotide-binding/ATPase domain of Ssa1, was shown to be modified in vivo by a model organic electrophile using Click chemistry technology, verifying that Ssa1 is a direct target for thiol-reactive compounds through adduct formation. Consistently, cadmium pretreatment promoted cells thermotolerance, which is abolished in cells carrying SSA1 cysteine mutant alleles. Taken together, these findings demonstrate that Hsp70 acts as a sensor to induce the cytoprotective heat shock response in response to environmental or endogenously produced thiol-reactive molecules and can discriminate between two distinct environmental stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast heat shock transcription factor (HSF) belongs to the winged helix family of proteins. HSF binds DNA as a trimer, and additional trimers can bind DNA co-operatively. Unlike other winged helix–turn–helix proteins, HSF’s wing does not appear to contact DNA, as based on a previously solved crystal structure. Instead, the structure implies that the wing is involved in protein–protein interactions, possibly within a trimer or between adjacent trimers. To understand the function of the wing in the HSF DNA-binding domain, a Saccharomyces cerevisiae strain was created that expresses a wingless HSF protein. This strain grows normally at 30°C, but shows a decrease in reporter gene expression during constitutive and heat-shocked conditions. Removal of the wing does not affect the stability or trimeric nature of a protein fragment containing the DNA-binding and trimerization domains. Removal of the wing does result in a decrease in DNA-binding affinity. This defect was mainly observed in the ability to form the first trimer-bound complex, as the formation of larger complexes is unaffected by the deletion. Our results suggest that the wing is not involved in the highly co-operative nature of HSF binding, but may be important in stabilizing the first trimer bound to DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that short exposure of tomato (Lycopersicon esculentum L.) fruits to high temperature protects them from chilling injury. To study the involvement of heat-shock proteins (HSPs) in the acquisition of low-temperature tolerance, we cloned two heat-shock-induced genes that are also expressed at low temperatures. The cloned cDNAs belong to the small HSP group. Sequence analyses of the clones showed perfect homology to the tomato-ripening gene tom66 and to the tomato chloroplastic HSP21 gene tom111. The expression of both genes was induced by high temperature in fruits, flowers, leaves, and stems, but not by low or ambient temperatures or by other stresses such as drought and anaerobic conditions. When the heated fruits were transferred to low temperature, tom66 and tom111 mRNA levels first decreased but were then reinduced. Induction was not observed in nonheated fruits at low temperature. Immunodetection of tom111-encoded protein indicated that this protein is present at low temperatures in the heated fruits. The results of this study show that the expression of tom66 and tom111 is correlated with protection against some, but not all, symptoms of chilling injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of plants to elevated temperatures results in a complex set of changes in gene expression that induce thermotolerance and improve cellular survival to subsequent stress. Pretreatment of young tobacco (Nicotiana plumbaginifolia) seedlings with Ca2+ or ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid enhanced or diminished subsequent thermotolerance, respectively, compared with untreated seedlings, suggesting a possible involvement of cytosolic Ca2+ in heat-shock (HS) signal transduction. Using tobacco seedlings transformed with the Ca2+-sensitive, luminescent protein aequorin, we observed that HS temperatures induced prolonged but transient increases in cytoplasmic but not chloroplastic Ca2+. A single HS initiated a refractory period in which additional HS signals failed to increase cytosolic Ca2+. However, throughout this refractory period, seedlings responded to mechanical stimulation or cold shock with cytosolic Ca2+ increases similar to untreated controls. These observations suggest that there may be specific pools of cytosolic Ca2+ mobilized by heat treatments or that the refractory period results from a temporary block in HS perception or transduction. Use of inhibitors suggests that HS mobilizes cytosolic Ca2+ from both intracellular and extracellular sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 70-kDa protein was specifically induced in Escherichia coli when the culture temperature was shifted from 37 to 15 degrees C. The protein was identified to be the product of the deaD gene (reassigned csdA) encoding a DEAD-box protein. Furthermore, after the shift from 37 to 15 degrees C, CsdA was exclusively localized in the ribosomal fraction and became a major ribosomal-associated protein in cells grown at 15 degrees C. The csdA deletion significantly impaired cell growth and the synthesis of a number of proteins, specifically the derepression of heat-shock proteins, at low temperature. Purified CsdA was found to unwind double-stranded RNA in the absence of ATP. Therefore, the requirement for CsdA in derepression of heat-shock protein synthesis is a cold shock-induced function possibly mediated by destabilization of secondary structures previously identified in the rpoH mRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Escherichia coli the heat shock response is under the positive control of the sigma 32 transcription factor. Three of the heat shock proteins, DnaK, DnaI, and GrpE, play a central role in the negative autoregulation of this response at the transcriptional level. Recently, we have shown that the DnaK and DnaJ proteins can compete with RNA polymerase for binding to the sigma 32 transcription factor in the presence of ATP, by forming a stable DnaJ-sigma 32-DnaK protein complex. Here, we report that DnaJ protein can catalytically activate DnaK's ATPase activity. In addition, DnaJ can activate DnaK to bind to sigma 32 in an ATP-dependent reaction, forming a stable sigma 32-DnaK complex. Results obtained with two DnaJ mutants, a missense and a truncated version, suggest that the N-terminal portion of DnaJ, which is conserved in all family members, is essential for this activation reaction. The activated form of DnaK binds preferentially to sigma 32 versus the bacteriophage lambda P protein substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat shock response in Escherichia coli is governed by the concentration of the highly unstable sigma factor sigma 32. The essential protein HflB (FtsH), known to control proteolysis of the phage lambda cII protein, also governs sigma 32 degradation: an HflB-depleted strain accumulated sigma 32 and induced the heat shock response, and the half-life of sigma 32 increased by a factor up to 12 in mutants with reduced HflB function and decreased by a factor of 1.8 in a strain overexpressing HflB. The hflB gene is in the ftsJ-hflB operon, one promoter of which is positively regulated by heat shock and sigma 32. The lambda cIII protein, which stabilizes sigma 32 and lambda cII, appears to inhibit the HflB-governed protease. The E. coli HflB protein controls the stability of two master regulators, lambda cII and sigma 32, responsible for the lysis-lysogeny decision of phage lambda and the heat shock response of the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When HL60 cells were induced to differentiate to granulocyte-like cells with the agents N-methylformamide and tunicamycin an concentrations marginally below those which were cytotoxic, there was a decrease in the synthesis of the glucose- regulated proteins which preceded the expression of markers of a differentiated phenotype. There was a transient increase in the amount of hsp70 after 36 hours in NMF treated cells but in differentiated cells negligible amounts were detected. Inducers which were known to modulate hsp70 such as azetadine carboxylic acid did not induce differentiation suggesting early changes in the endoplasmic reticulum may be involved in the commitment to terminal differentiation of HL60 cells. These changes in group synthesis were not observed when K562 human chronic myelogenous leukemia cells were induced to differentiate to erythroid-like cells but there was a comparable increase in amounts of hsp70. When cells were treated with concentrations of drugs which brought about a loss in cell viability there was an early increase in the amount of hsp70 protein in the absence of any increase in synthesis. HL60 cells were treated with NMF (225mM), Adriamycin (1μM), or CB3717 (5μM) and there was an increase in the amounts of hsp70, in the absence of any new synthesis, which preceded any loss of membrane integrity and any significant changes in cell cycle but was concomitant with a later loss in viability of > 50% and a loss in proliferative potential. The amounts of hsp70 in the cell after treatment with any of the drugs was comparable to that obtained after a heat shock. Following a heat shock hsp70 was translocated from the cytoplasm to the nucleus, but treatment with toxic concentrations of drug caused hsp70 to remain localised in the cytoplasm. Changes in hsp70 turn-over was observed after a heat shock compared to NMF-treated cells. Morphological studies suggested that cells that had been treated with NMF and CB3717 were undergoing necrosis whereas the Adriamycin cells showed characteristics that were indicative of apoptosis. The data supports the hypothesis that an increase in amounts of hsp70 is an early marker of cell death.