888 resultados para Grid computing environment


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer's expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98%. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Postprint

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Um das principais características da tecnologia de virtualização é a Live Migration, que permite que máquinas virtuais sejam movimentadas entre máquinas físicas sem a interrupção da execução. Esta característica habilita a implementação de políticas mais sofisticadas dentro de um ambiente de computação na nuvem, como a otimização de uso de energia elétrica e recursos computacionais. Entretanto, a Live Migration pode impor severa degradação de desempenho nas aplicações das máquinas virtuais e causar diversos impactos na infraestrutura dos provedores de serviço, como congestionamento de rede e máquinas virtuais co-existentes nas máquinas físicas. Diferente de diversos estudos, este estudo considera a carga de trabalho da máquina virtual um importante fator e argumenta que escolhendo o momento adequado para a migração da máquina virtual pode-se reduzir as penalidades impostas pela Live Migration. Este trabalho introduz a Application-aware Live Migration (ALMA), que intercepta as submissões de Live Migration e, baseado na carga de trabalho da aplicação, adia a migração para um momento mais favorável. Os experimentos conduzidos neste trabalho mostraram que a arquitetura reduziu em até 74% o tempo das migrações para os experimentos com benchmarks e em até 67% os experimentos com carga de trabalho real. A transferência de dados causada pela Live Migration foi reduzida em até 62%. Além disso, o presente introduz um modelo que faz a predição do custo da Live Migration para a carga de trabalho e também um algoritmo de migração que não é sensível à utilização de memória da máquina virtual.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cloud Agile Manufacturing is a new paradigm proposed in this article. The main objective of Cloud Agile Manufacturing is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a new manufacturing paradigm, we call Cloud Agile Manufacturing, and whose principal objective is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer science studies possess a strong multidisciplinary aptitude since most graduates do their professional work outside of a computing environment, in close collaboration with professionals from many different areas. However, the training offered in computer science studies lacks that multidisciplinary factor, focusing more on purely technical aspects. In this paper we present a novel experience where computer studies and educational psychology find a common ground and realistic working through laboratory practices. Specifically, the work enables students of computer science education the development of diagnosis support systems, with artificial intelligence techniques, which could then be used for future educational psychologists. The applications developed by computer science students are the creation of a model for the diagnosis of pervasive developmental disorders (PDD), sometimes also commonly called the autism spectrum disorders (ASD). The complexity of this diagnosis, not only by the exclusive characteristics of every person who suffers from it, but also by the large numbers of variables involved in it, requires very strong and close interdisciplinary participation. This work demonstrates that it is possible to intervene in a curricular perspective, in the university, to promote the development of interpersonal skills. What can be shown, in this way, is a methodology for interdisciplinary practices design and a guide for monitoring and evaluation. The results are very encouraging since we obtained significant differences in academic achievement between students who attended a course using the new methodology and those who did not use it.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preface. The evolution of cognitive neuroscience has been spurred by the development of increasingly sophisticated investigative techniques to study human cognition. In Methods in Mind, experts examine the wide variety of tools available to cognitive neuroscientists, paying particular attention to the ways in which different methods can be integrated to strengthen empirical findings and how innovative uses for established techniques can be developed. The book will be a uniquely valuable resource for the researcher seeking to expand his or her repertoire of investigative techniques. Each chapter explores a different approach. These include transcranial magnetic stimulation, cognitive neuropsychiatry, lesion studies in nonhuman primates, computational modeling, psychophysiology, single neurons and primate behavior, grid computing, eye movements, fMRI, electroencephalography, imaging genetics, magnetoencephalography, neuropharmacology, and neuroendocrinology. As mandated, authors focus on convergence and innovation in their fields; chapters highlight such cross-method innovations as the use of the fMRI signal to constrain magnetoencephalography, the use of electroencephalography (EEG) to guide rapid transcranial magnetic stimulation at a specific frequency, and the successful integration of neuroimaging and genetic analysis. Computational approaches depend on increased computing power, and one chapter describes the use of distributed or grid computing to analyze massive datasets in cyberspace. Each chapter author is a leading authority in the technique discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of cognitive neuroscience has been spurred by the development of increasingly sophisticated investigative techniques to study human cognition. In Methods in Mind, experts examine the wide variety of tools available to cognitive neuroscientists, paying particular attention to the ways in which different methods can be integrated to strengthen empirical findings and how innovative uses for established techniques can be developed. The book will be a uniquely valuable resource for the researcher seeking to expand his or her repertoire of investigative techniques. Each chapter explores a different approach. These include transcranial magnetic stimulation, cognitive neuropsychiatry, lesion studies in nonhuman primates, computational modeling, psychophysiology, single neurons and primate behavior, grid computing, eye movements, fMRI, electroencephalography, imaging genetics, magnetoencephalography, neuropharmacology, and neuroendocrinology. As mandated, authors focus on convergence and innovation in their fields; chapters highlight such cross-method innovations as the use of the fMRI signal to constrain magnetoencephalography, the use of electroencephalography (EEG) to guide rapid transcranial magnetic stimulation at a specific frequency, and the successful integration of neuroimaging and genetic analysis. Computational approaches depend on increased computing power, and one chapter describes the use of distributed or grid computing to analyze massive datasets in cyberspace. Each chapter author is a leading authority in the technique discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mediation techniques provide interoperability and support integrated query processing among heterogeneous databases. While such techniques help data sharing among different sources, they increase the risk for data security, such as violating access control rules. Successful protection of information by an effective access control mechanism is a basic requirement for interoperation among heterogeneous data sources. ^ This dissertation first identified the challenges in the mediation system in order to achieve both interoperability and security in the interconnected and collaborative computing environment, which includes: (1) context-awareness, (2) semantic heterogeneity, and (3) multiple security policy specification. Currently few existing approaches address all three security challenges in mediation system. This dissertation provides a modeling and architectural solution to the problem of mediation security that addresses the aforementioned security challenges. A context-aware flexible authorization framework was developed in the dissertation to deal with security challenges faced by mediation system. The authorization framework consists of two major tasks, specifying security policies and enforcing security policies. Firstly, the security policy specification provides a generic and extensible method to model the security policies with respect to the challenges posed by the mediation system. The security policies in this study are specified by 5-tuples followed by a series of authorization constraints, which are identified based on the relationship of the different security components in the mediation system. Two essential features of mediation systems, i. e., relationship among authorization components and interoperability among heterogeneous data sources, are the focus of this investigation. Secondly, this dissertation supports effective access control on mediation systems while providing uniform access for heterogeneous data sources. The dynamic security constraints are handled in the authorization phase instead of the authentication phase, thus the maintenance cost of security specification can be reduced compared with related solutions. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Security remains a top priority for organizations as their information systems continue to be plagued by security breaches. This dissertation developed a unique approach to assess the security risks associated with information systems based on dynamic neural network architecture. The risks that are considered encompass the production computing environment and the client machine environment. The risks are established as metrics that define how susceptible each of the computing environments is to security breaches. ^ The merit of the approach developed in this dissertation is based on the design and implementation of Artificial Neural Networks to assess the risks in the computing and client machine environments. The datasets that were utilized in the implementation and validation of the model were obtained from business organizations using a web survey tool hosted by Microsoft. This site was designed as a host site for anonymous surveys that were devised specifically as part of this dissertation. Microsoft customers can login to the website and submit their responses to the questionnaire. ^ This work asserted that security in information systems is not dependent exclusively on technology but rather on the triumvirate people, process and technology. The questionnaire and consequently the developed neural network architecture accounted for all three key factors that impact information systems security. ^ As part of the study, a methodology on how to develop, train and validate such a predictive model was devised and successfully deployed. This methodology prescribed how to determine the optimal topology, activation function, and associated parameters for this security based scenario. The assessment of the effects of security breaches to the information systems has traditionally been post-mortem whereas this dissertation provided a predictive solution where organizations can determine how susceptible their environments are to security breaches in a proactive way. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to shrinking budgets and new demands for technology, Scottsdale Community College (SCC) IT department needed an effective, sustainable solution that would provide ubiquitous access to technology for students, faculty, and staff, both on- and off-campus. This paper explores how SCC implemented a complete virtualized computing environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scientific workflows orchestrate the execution of complex experiments frequently using distributed computing platforms. Meta-workflows represent an emerging type of such workflows which aim to reuse existing workflows from potentially different workflow systems to achieve more complex and experimentation minimizing workflow design and testing efforts. Workflow interoperability plays a profound role in achieving this objective. This paper is focused at fostering interoperability across meta-workflows that combine workflows of different workflow systems from diverse scientific domains. This is achieved by formalizing definitions of meta-workflow and its different types to standardize their data structures used to describe workflows to be published and shared via public repositories. The paper also includes thorough formalization of two workflow interoperability approaches based on this formal description: the coarse-grained and fine-grained workflow interoperability approach. The paper presents a case study from Astrophysics which successfully demonstrates the use of the concepts of meta-workflows and workflow interoperability within a scientific simulation platform.