255 resultados para Gretchen Gfeller


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 µatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion) boundary layer (DBL), formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 'ambient' and 7.65 a worst case 'ocean acidification' scenario projected for 2100), each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick). Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface) maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05) was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3) responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and 17863_TC values ranging from -28.7? to +2.3?. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (d13C_TOC: -28.9? to -21.5?) and variations in d13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important (as yet unidentified) reservoir for dissolved organic carbon (DOC) from seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen beta chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1 gamma, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barium concentrations were measured on 17 pore fluid and 13 sediment samples from Sites 1253 and 1254 drilled offshore Costa Rica during Ocean Drilling Program (ODP) Leg 205. An additional 83 pore fluid and 29 sediment samples were analyzed for Ba concentrations from Sites 1039 and 1040 drilled during ODP Leg 170 offshore Costa Rica. Sites 1039/1253 and 1040/1254 are part of a transect across the Middle America Trench offshore Nicoya Peninsula. The entire incoming sediment section is being underthrust beneath the margin, providing an ideal setting to examine Ba cycling in the shallow levels of the subduction zone. Results from these analyses indicate that a significant amount of Ba is liberated from the mineral barite (BaSO4) in the uppermost hemipelagic sediments arcward of the trench. The shallow distillation of Ba may impact the amount of sedimentary Ba reaching the deeper subduction zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lost City hydrothermal system at the southern Atlantis Massif (Mid-Atlantic Ridge, 30°N) provides a natural laboratory for studying serpentinization processes, the temporal evolution of ultramafic-hosted hydrothermal systems, and alteration conditions during formation and emplacement of an oceanic core complex. Here we present B, O, and Sr isotope data to investigate fluid/rock interaction and mass transfer during detachment faulting and exhumation of lithospheric sequences within the Atlantis Massif. Our data indicate that extensive serpentinization was a seawater-dominated process that occurred predominately at temperatures of 150-250 °C and at high integrated W/R ratios that led to a marked boron enrichment (34-91 ppm). Boron removal from seawater during serpentinization is positively correlated with changes in d11B (11-16 per mil) but shows no correlation with O-isotope composition. Modeling indicates that B concentrations and isotope values of the serpentinites are controlled by transient temperature-pH conditions. In contrast to prior studies, we conclude that low-temperature marine weathering processes are insignificant for boron geochemistry of the Atlantis Massif serpentinites. Talc- and amphibole-rich fault rocks formed within a zone of detachment faulting at temperatures of approximately 270-350 °C and at low W/R ratios. Talc formation in ultramafic domains in the massif was subsequent to an early stage of serpentinization and was controlled by the access of Si-rich fluids derived through seawater-gabbro interactions. Replacement of serpentine by talc resulted in boron loss and significant lowering of d11B values (9-10 per mil), which we model as the product of progressive extraction of boron. Our study provides new constraints on the boron geochemical cycle at oceanic spreading ridges and suggests that serpentinization associated with ultramafic-hosted hydrothermal systems may have important implications for the behavior of boron in subduction zone settings.

Relevância:

10.00% 10.00%

Publicador: