985 resultados para Graphite-epoxy silver nanocomposite
Resumo:
The electrodeposition of silver from two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) and N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C4mPyr][TFSI]), and an aqueous KNO3 solution on a glassy carbon electrode was undertaken. It was found by cyclic voltammetry that the electrodeposition of silver proceeds through nucleation–growth kinetics. Analysis of chronoamperometric data indicated that the nucleation–growth mechanism is instantaneous at all potentials in the case of [BMIm][BF4] and [C4mPyr][TFSI], and instantaneous at low overpotentials tending to progressive at high overpotentials for KNO3. Significantly, under ambient conditions, the silver electrodeposition mechanism changes to progressive nucleation and growth in [C4mPyr][TFSI], which is attributed to the uptake of atmospheric water in the IL. It was found that these differences in the growth mechanism impact significantly on the morphology of the resultant electrodeposit which is characterised ex situ by scanning electron microscopy and X-ray diffraction.
Resumo:
In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.
Resumo:
The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.
Resumo:
The formation of readily recoverable and reusable organic semiconducting Cu- and AgTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) microstructures decorated with Pt and Pd metallic nanoparticles is described for the effective reduction of CrVI ions in aqueous solution at room temperature using both formic acid and an environmentally friendly thiosulfate reductant. The M-TCNQ (M=metal) materials were formed by electrocrystallisation onto a glassy carbon surface followed by galvanic replacement in the presence of H2PtCl6 or PdCl2 to form the composite material. It was found that loading of the surface with nanoparticles could easily be controlled by changing the metal salt concentration. Significantly, the M-TCNQ substrates facilitated the formation of well-isolated metal nanoparticles on their surfaces under appropriate galvanic replacement conditions. The semiconductor–metal nanoparticle combination was also found to be critical to the catalyst performance, wherein the best-performing material was CuTCNQ modified by well-isolated Pt nanoparticles with both formic acid and thiosulfate ions as the reductant.
Resumo:
Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...
Resumo:
Bi-2212 thick film on silver tapes are seen as a simple and low cost alternative to high temperature superconducting wires produced by the Powder In Thbe (PIT) technique, particularly in react and wind applications. A rig for the continuous production of Bi-2212 tapes for use in react and wind component manufacture has been developed and commissioned. The rig consists of several sections, each fully automatic, for task specific duties in the production of HTS tape. The major sections are: tape coating, sintering and annealing. High temperature superconducting tapes with engineering critical current densities of 10 kA/cm2 (77 K, self field), and lengths of up to 100 m have been produced using the rig. Properties of the finished tape are discussed and results are presented for current density versus bend radius and applied strain. Depending on tape content and thickness, irreversible strain tirrm varies between 0.04 and 0.1 %. Cyclic bending tests when applied strain does not exceed Eirrm showed negligible reduction in J c along the length of the tape.
Resumo:
Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.
Resumo:
Atomic scale periodic ripples that extend for several nanometers on the surface of adjacent graphitic grains have been observed for the first time on highly ordered pyrolitic graphite by UHV-STM. The ripples emanate from a grain boundary, and are explained in terms of a mechanical deformation due to the elastic strain accumulated along the GB, which is relieved out-of-plane in the topmost graphene layer. We present a molecular dynamics model that accounts for the formation of similar ripples as result of the lattice mismatch induced by two different grain orientations.
Resumo:
BACKGROUND Silver dressings have been widely and successfully used to prevent cutaneous wounds, including burns, chronic ulcers, dermatitis and other cutaneous conditions, from infection. However, in a few cases, skin discolouration or argyria-like appearances have been reported. This study investigated the level of silver in scar tissue post-burn injury following application of Acticoat, a silver dressing. METHODS A porcine deep dermal partial thickness burn model was used. Burn wounds were treated with this silver dressing until completion of re-epithelialization, and silver levels were measured in a total of 160 scars and normal tissues. RESULTS The mean level of silver in scar tissue covered with silver dressings was 136 microg/g, while the silver level in normal skin was less than 0.747 microg/g. A number of wounds had a slate-grey appearance, and dissection of the scars revealed brown-black pigment mostly in the middle and deep dermis within the scar. The level of silver and the severity of the slate-grey discolouration were correlated with the length of time of the silver dressing application. CONCLUSIONS These results show that silver deposition in cutaneous scar tissue is a common phenomenon, and higher levels of silver deposits and severe skin discolouration are correlated with an increase in the duration of this silver dressing application.
Resumo:
Silver dressings have been widely used to successfully prevent burn wound infection and sepsis. However, a few case studies have reported the functional abnormality and failure of vital organs, possibly caused by silver deposits. The aim of this study was to investigate the serum silver level in the pediatric burn population and also in several internal organs in a porcine burn model after the application of Acticoat. A total of 125 blood samples were collected from 46 pediatric burn patients. Thirty-six patients with a mean of 13.4% TBSA burns had a mean peak serum silver level of 114 microg/L, whereas 10 patients with a mean of 1.85% TBSA burns had an undetectable level of silver (<5.4 microg/L). Overall, serum silver levels were closely related to burn sizes. However, the highest serum silver was 735 microg/L in a 15-month-old toddler with 10% TBSA burns and the second highest was 367 microg/L in a 3-year old with 28% TBSA burns. In a porcine model with 2% TBSA burns, the mean peak silver level was 38 microg/L at 2 to 3 weeks after application of Acticoat and was then significantly reduced to an almost undetectable level at 6 weeks. Of a total of four pigs, silver was detected in all four livers (1.413 microg/g) and all four hearts (0.342 microg/g), three of four kidneys (1.113 microg/g), and two of four brains (0.402 microg/g). This result demonstrated that although variable, the level of serum silver was positively associated with the size of burns, and significant amounts of silver were deposited in internal organs in pigs with only 2% TBSA burns, after application of Acticoat.
Resumo:
Studies of the optical properties and catalytic capabilities of noble metal nanoparticles (NPs), such as gold (Au) and silver (Ag), have formed the basis for the very recent fast expansion of the field of green photocatalysis: photocatalysis utilizing visible and ultraviolet light, a major part of the solar spectrum. The reason for this growth is the recognition that the localised surface plasmon resonance (LSPR) effect of Au NPs and Ag NPs can couple the light flux to the conduction electrons of metal NPs, and the excited electrons and enhanced electric fields in close proximity to the NPs can contribute to converting the solar energy to chemical energy by photon-driven photocatalytic reactions. Previously the LSPR effect of noble metal NPs was utilized almost exclusively to improve the performance of semiconductor photocatalysts (for example, TiO2 and Ag halides), but recently, a conceptual breakthrough was made: studies on light driven reactions catalysed by NPs of Au or Ag on photocatalytically inactive supports (insulating solids with a very wide band gap) have demonstrated that these materials are a class of efficient photocatalysts working by mechanisms distinct from those of semiconducting photocatalysts. There are several reasons for the significant photocatalytic activity of Au and Ag NPs. (1) The conduction electrons of the particles gain the irradiation energy, resulting in high energy electrons at the NP surface which is desirable for activating molecules on the particles for chemical reactions. (2) In such a photocatalysis system, both light harvesting and the catalysing reaction take place on the nanoparticle, and so charge transfer between the NPs and support is not a prerequisite. (3) The density of the conduction electrons at the NP surface is much higher than that at the surface of any semiconductor, and these electrons can drive the reactions on the catalysts. (4) The metal NPs have much better affinity than semiconductors to many reactants, especially organic molecules. Recent progress in photocatalysis using Au and Ag NPs on insulator supports is reviewed. We focus on the mechanism differences between insulator and semiconductor-supported Au and Ag NPs when applied in photocatalytic processes, and the influence of important factors, light intensity and wavelength, in particular estimations of light irradiation contribution, by calculating the apparent activation energies of photo reactions and thermal reactions.
Resumo:
This research introduces a novel dressing for burn wounds, containing silver nanoparticles in hydrogels for infected burn care. The 2-acrylamido-2-methylpropane sulfonic acid sodium salt hydrogels containing silver nanoparticles have been prepared via ultraviolet radiation. The formation of silver nanoparticles was monitored by surface plasmon bands and transmission electron microscopy. The concentration of silver nitrate loaded in the solutions slightly affected the physical properties and mechanical properties of the neat hydrogel. An indirect cytotoxicity study found that none of the hydrogels were toxic to tested cell lines. The measurement of cumulative release of silver indicated that 70%–82% of silver was released within 72 hr. The antibacterial activities of the hydrogels against common burn pathogens were studied and the results showed that 5 mM silver hydrogel had the greatest inhibitory activity. The results support its use as a potential burn wound dressing.
Resumo:
Aim To evaluate the effectiveness of novel nanohybrids, composed of silver nanoparticles and nanoscale silicate platelets, to clear Pseudomonas aeruginosa biofilms. Materials & methods The nanohybrids were manufactured from an in situ reduction of silver salts in the silicate platelet dispersion, and then applied to biofilms in vitro and in vivo. Results In reference to the biocidal effects of gentamycin, the nanohybrids mitigated the spreading of the biofilms, and initiated robust cell death and exfoliation from the superficial layers of the biofilms in vitro. In vivo, the nanohybrids exhibited significant therapeutic effects by eliminating established biofilms from infected corneas and promoting the recovery of corneal integrity. Conclusion All of the evaluations indicate the high potency of the newly developed silver nanoparticle/nanoscale silicate platelet nanohybrids for eliminating biofilms.
Resumo:
Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.
Resumo:
Antechinus argentus sp. nov. is currently only known from the plateau at the eastern escarpment of Kroombit Tops National Park, about 400km NNW of Brisbane and 60km SSW of Gladstone, south-east Queensland, Australia. Antechinus flavipes (Waterhouse) is also known from Kroombit Tops NP, 4.5km W of the nearest known population of A. argentus; A. mysticus Baker, Mutton and Van Dyck has yet to be found within Kroombit Tops, but is known from museum specimens taken at Bulburin NP, just 40km ESE, as well as extant populations about 400km to both the south-east and north-west of Kroombit NP. A. argentus can be easily distinguished in the field, having an overall silvery/grey appearance with much paler silver feet and drabber deep greyish-olive rump than A. flavipes, which has distinctive yellow-orange toned feet, rump and tail-base; A. argentus fur is also less coarse than that of A. flavipes. A. argentus has a striking silver-grey head, neck and shoulders, with pale, slightly broken eye-rings, which distinguish it from A. mysticus which has a more subtle greyish-brown head, pale buff dabs of eyeliner and more colourful brownish-yellow rump. Features of the dentary can also be used for identification: A. argentus differs from A. flavipes in having smaller molar teeth, as well as a narrower and smaller skull and from A. mysticus in having on average a narrower snout, smaller skull and dentary lengths and smaller posterior palatal vacuities in the skull. A. argentus is strongly divergent genetically (at mtDNA) from both A. flavipes (9.0–11.2%) and A. mysticus (7.2–7.5%), and forms a very strongly supported clade to the exclusion of all other antechinus species, in both mtDNA and combined (mtDNA and nDNA) phylogenies inferred here. We are yet to make detailed surveys in search of A. argentus from forested areas to the immediate east and north of Kroombit Tops. However, A. mysticus has only been found at these sites in low densities in decades past and not at all in several recent trapping expeditions conducted by the authors. With similar habitat types in close geographic proximity, it is plausible that A. argentus may be found outside Kroombit. Nevertheless, it is striking that from a range of surveys conducted at Kroombit Tops in the last 15 years and intensive surveys by the authors in the last 3 years, totalling more than 5 080 trap nights, just 13 A. argentus have been captured from two sites less than 6 km apart. If this is even close to the true geographic extent of the species, it would possess one of the smallest distributions of an Australian mammal species. With several threats identified, we tentatively recommend that A. argentus be listed as Endangered, pending an exhaustive trapping survey of Kroombit and surrounds.