960 resultados para Governing differential equations
Resumo:
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
Resumo:
Dichotomic maps are considered by means of the stability of the null solution of a class of differential equations with piecewise constant argument via associated discrete equations. Copyright © 2008 Watam Press.
Resumo:
This paper deals with the study of the basic theory of existence, uniqueness and continuation of solutions of di®erential equations with piecewise constant argument. Results about asymptotic stability of the equation x(t) =-bx(t) + f(x([t])) with argu- ment [t], where [t] designates the greatest integer function, are established by means of dichotomic maps. Other example is given to illustrate the application of the method. Copyright © 2011 Watam Press.
Resumo:
In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.
Resumo:
We establish general conditions for the unique solvability of nonlinear measure functional differential equations in terms of properties of suitable linear majorants.
Resumo:
We consider a class of functional differential equations subject to perturbations, which vary in time, and we study the exponential stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational exponential stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be exponentially stable. Then, we apply the results to get corresponding ones for impulsive functional differential equations. We also present an example of a delay differential equation with Perron integrable right-hand side where we apply our result.
Resumo:
By using the theory of semigroups of growth α, we discuss the existence of mild solutions for a class of abstract neutral functional differential equations. A concrete application to partial neutral functional differential equations is considered.
Resumo:
Despite the huge number of works considering fractional derivatives or derivatives on time scales some basic facts remain to be evaluated. Here we will be showing that the fractional derivative of monomials is in fact an entire derivative considered on an appropriate time scale.
Resumo:
In this paper we discuss the existence of solutions for a class of abstract differential equations with nonlocal conditions for which the nonlocal term involves the temporal derivative of the solution. Some concrete applications to parabolic differential equations with nonlocal conditions are considered. (C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
Resumo:
We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.
Resumo:
In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.
Resumo:
We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.
Resumo:
[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.
Resumo:
[EN] In this work, we present a new model for a dense disparity estimation and the 3-D geometry reconstruction using a color image stereo pair. First, we present a brief introduction to the 3-D Geometry of a camera system. Next, we propose a new model for the disparity estimation based on an energy functional. We look for the local minima of the energy using the associate Euler-Langrage partial differential equations. This model is a generalization to color image of the model developed in, with some changes in the strategy to avoid the irrelevant local minima. We present some numerical experiences of 3-D reconstruction, using this method some real stereo pairs.