928 resultados para Geometry Character


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and charge density distribution studies have been carried out on a single crystal data of an ammonium borate, [C(10)H(26)N(4)][B(5)O(6)(OH)(4)](2), synthesized by solvothermal method. Further, the experimentally observed geometry is used for the theoretical charge density calculations using the B3LYP/6-31G** level of theory, and the results are compared with the experimental values. Topological analysis of charge density based on the Atoms in Molecules approach for B-O bonds exhibit mixed covalent/ionic character. Detailed analysis of the hydrogen bonds in the crystal structure in the ammonium borate provides insights into the understanding of the reaction pathways that net atomic charges and electrostatic potential isosurfaces also give additional such systems. could result in the formation of borate minerals. The input to evaluate chemical and physical properties in such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fractal coding method to recognize online handwritten Tamil characters and propose a novel technique to increase the efficiency in terms of time while coding and decoding. This technique exploits the redundancy in data, thereby achieving better compression and usage of lesser memory. It also reduces the encoding time and causes little distortion during reconstruction. Experiments have been conducted to use these fractal codes to classify the online handwritten Tamil characters from the IWFHR 2006 competition dataset. In one approach, we use fractal coding and decoding process. A recognition accuracy of 90% has been achieved by using DTW for distortion evaluation during classification and encoding processes as compared to 78% using nearest neighbor classifier. In other experiments, we use the fractal code, fractal dimensions and features derived from fractal codes as features in separate classifiers. While the fractal code is successful as a feature, the other two features are not able to capture the wide within-class variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we compare the experimental results for Tamil online handwritten character recognition using HMM and Statistical Dynamic Time Warping (SDTW) as classifiers. HMM was used for a 156-class problem. Different feature sets and values for the HMM states & mixtures were tried and the best combination was found to be 16 states & 14 mixtures, giving an accuracy of 85%. The features used in this combination were retained and a SDTW model with 20 states and single Gaussian was used as classifier. Also, the symbol set was increased to include numerals, punctuation marks and special symbols like $, & and #, taking the number of classes to 188. It was found that, with a small addition to the feature set, this simple SDTW classifier performed on par with the more complicated HMM model, giving an accuracy of 84%. Mixture density estimation computations was reduced by 11 times. The recognition is writer independent, as the dataset used is quite large, with a variety of handwriting styles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the problem of time series classification. Using piecewise linear interpolation various novel kernels are obtained which can be used with Support vector machines for designing classifiers capable of deciding the class of a given time series. The approach is general and is applicable in many scenarios. We apply the method to the task of Online Tamil handwritten character recognition with promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoacoustic engines convert heat energy into high amplitude sound waves, which is used to drive thermoacoustic refrigerator or pulse tube cryocoolers by replacing the mechanical pistons such as compressors. The increasing interest in thermoacoustic technology is of its potentiality of no exotic materials, low cost and high reliability compared to vapor compression refrigeration systems. The experimental setup has been built based on the linear thermoacoustic model and some simple design parameters. The engines produce acoustic energy at the temperature difference of 325-450 K imposed along the stack of the system. This work illustrates the influence of stack parameters such as plate thickness (PT) and plate spacing (PS) with resonator length on the performance of thermoacoustic engine, which are measured in terms of onset temperature difference, resonance frequency and pressure amplitude using air as a working fluid. The results obtained from the experiments are in good agreement with the theoretical results from DeltaEc. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We carry out a comparative study of the electronic structure of two pyrochlore ruthenate compounds, Tl2Ru2O7 and Hg2Ru2O7, in terms of first principles calculations. Our study reveals the Ru d electrons in Hg2Ru2O7 to be much more delocalized compared to that in Tl2Ru2O7. The subtle change in the Ru-d bandwidths in the two compounds, triggered by the differences in Hg 5d-Ru 4d hybridization compared to that of Tl 5d-Ru 4d, bring in the observed differences in behavior. Our study further shows that the development of long range noncollinear antiferromagnetic structure at low temperature is sufficient to produce the insulating solution in Hg2Ru2O7, in line with the prediction from recent nuclear magnetic resonance study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of geometric parameters, such as blade profile and hub geometry on axial flow turbines for micro hydro application remains poorly characterized. This paper first introduces a holistic theoretical model for studying the hydraulic phenomenon resulting from geometric modification to the blades. It then describes modification carried out on two runner stages, of which one has untwisted blades and the other has twisted blades obtained by modifying the inlet hub. The experimental results showed that the performance of the untwisted blade runner was satisfactory with a maximum efficiency of 68%. However, positive effects of twisted blades were clearly evident with an efficiency rise of more than 2%. This study also looks into the possible limitations of the model and suggests the extension of the experimental work and the use of computational tools to conduct a progressive validation of all experimental findings, especially on the flow physics within the hub region and the slip phenomena. The paper finally underlines the importance of developing a standardization philosophy for axial flow turbines specific for micro hydro requirements. DOI:10.1061/(ASCE)EY.1943-7897.0000060. (C) 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between the digital human model (DHM) and environment typically occurs in two distinct modes; one, when the DHM maintains contacts with the environment using its self weight, wherein associated reaction forces at the interface due to gravity are unidirectional; two, when the DHM applies both tension and compression on the environment through anchoring. For static balancing in first mode of interaction, it is sufficient to maintain the projection of the centre of mass (COM) inside the convex region induced by the weight supporting segments of the body on a horizontal plane. In DHM, static balancing is required while performing specified tasks such as reach, manipulation and locomotion; otherwise the simulations would not be realistic. This paper establishes the geometric relationships that must be satisfied for maintaining static balance while altering the support configurations for a given posture and altering the posture for a given support condition. For a given location of the COM for a system supported by multiple point contacts, the conditions for simultaneous withdrawal of a specified set of contacts have been determined in terms of the convex hulls of the subsets of the points of contact. When the projection of COM must move beyond the existing support for performing some task, new supports must be enabled for maintaining static balance. This support seeking behavior could also manifest while planning for reduction of support stresses. Feasibility of such a support depends upon the availability of necessary features in the environment. Geometric conditions necessary for selection of new support on horizontal,inclined and vertical surfaces within the workspace of the DHM for such dynamic scenario have been derived. The concepts developed are demonstrated using the cases of sit-to-stand posture transition for manipulation of COM within the convex supporting polygon, and statically stable walking gaits for support seeking within the kinematic capabilities of the DHM. The theory developed helps in making the DHM realize appropriate behaviors in diverse scenarios autonomously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let be a noncompact symmetric space of higher rank. We consider two types of averages of functions: one, over level sets of the heat kernel on and the other, over geodesic spheres. We prove injectivity results for functions in which extend the results in Pati and Sitaram (Sankya Ser A 62:419-424, 2000).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic modelling is a useful way of simulating complex hard-rock aquifers as hydrological properties (permeability, porosity etc.) can be described using random variables with known statistics. However, very few studies have assessed the influence of topological uncertainty (i.e. the variability of thickness of conductive zones in the aquifer), probably because it is not easy to retrieve accurate statistics of the aquifer geometry, especially in hard rock context. In this paper, we assessed the potential of using geophysical surveys to describe the geometry of a hard rock-aquifer in a stochastic modelling framework. The study site was a small experimental watershed in South India, where the aquifer consisted of a clayey to loamy-sandy zone (regolith) underlain by a conductive fissured rock layer (protolith) and the unweathered gneiss (bedrock) at the bottom. The spatial variability of the thickness of the regolith and fissured layers was estimated by electrical resistivity tomography (ERT) profiles, which were performed along a few cross sections in the watershed. For stochastic analysis using Monte Carlo simulation, the generated random layer thickness was made conditional to the available data from the geophysics. In order to simulate steady state flow in the irregular domain with variable geometry, we used an isoparametric finite element method to discretize the flow equation over an unstructured grid with irregular hexahedral elements. The results indicated that the spatial variability of the layer thickness had a significant effect on reducing the simulated effective steady seepage flux and that using the conditional simulations reduced the uncertainty of the simulated seepage flux. As a conclusion, combining information on the aquifer geometry obtained from geophysical surveys with stochastic modelling is a promising methodology to improve the simulation of groundwater flow in complex hard-rock aquifers. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.