994 resultados para Genetic Vectors
Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids
Resumo:
Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use
Resumo:
DNA-based immunization has initiated a new era of vaccine research. One of the main goals of gene vaccine development is the control of the levels of expression in vivo for efficient immunization. Modifying the vector to modulate expression or immunogenicity is of critical importance for the improvement of DNA vaccines. The most frequently used vectors for genetic immunization are plasmids. In this article, we review some of the main elements relevant to their design such as strong promoter/enhancer region, introns, genes encoding antigens of interest from the pathogen (how to choose and modify them), polyadenylation termination sequence, origin of replication for plasmid production in Escherichia coli, antibiotic resistance gene as selectable marker, convenient cloning sites, and the presence of immunostimulatory sequences (ISS) that can be added to the plasmid to enhance adjuvanticity and to activate the immune system. In this review, the specific modifications that can increase overall expression as well as the potential of DNA-based vaccination are also discussed.
Resumo:
The use of mammalian gene expression vectors has become increasingly important for genetic immunization and gene therapy as well as basic research. Essential for the success of these vectors in genetic immunization is the proper choice of a promoter linked to the antigen of interest. Many genetic immunization vectors use promoter elements from pathogenic viruses including SV40 and CMV. Lymphokines produced by the immune response to proteins expressed by these vectors could inhibit further transcription initiation by viral promoters. Our objective was to determine the effect of IFN-g on transgene expression driven by viral SV40 or CMV promoter/enhancer and the mammalian promoter/enhancer for the major histocompatibility complex class I (MHC I) gene. We transfected the luciferase gene driven by these three promoters into 14 cell lines of many tissues and several species. Luciferase assays of transfected cells untreated or treated with IFN-g indicated that although the viral promoters could drive luciferase production in all cell lines tested to higher or lower levels than the MHC I promoter, treatment with IFN-g inhibited transgene expression in most of the cell lines and amplification of the MHC I promoter-driven transgene expression in all cell lines. These data indicate that the SV40 and CMV promoter/enhancers may not be a suitable choice for gene delivery especially for genetic immunization or cancer cytokine gene therapy. The MHC I promoter/enhancer, on the other hand, may be an ideal transgene promoter for applications involving the immune system.
Resumo:
DNA analysis by molecular techniques has significantly expanded the perspectives of the study and understanding of genetic variability in molluscs that ere vectors of schistosomiasis. In tire present study, the genetic variability of susceptible and resistant B. tenagophila strains to S. mansoni infection was investigated using amplification of their genomic DNA by RAPD-PCR. The products were analyzed by PAGE and stained with silver. The results showed pdymorphism between tested strains with four different primers. We found two bonds of 1,900 and 3,420 bp that were characteristic of the susceptible strains with primer 2. The primers 9 end 10 identified a single polymorphic bond that was also characteristic of (3,136 and 5,041 bp, respectively) susceptible snails. Two polymorphic bonds were detected by primer 15: one with 1 800 bp was characteristic of the resistant strain and the other with 1,700 do in the susceptible one. These results provide additional evidence showing that the RAPD-PCR technique is adequate for the study of polymorphisms in intermediate hosts snails of S. mansoni. The obtained results are expected to expend the knowledge about the genetic variability of the snails and to permit the future identification of genomic sequences specifically related to the resistance/susceptibility of Biompholario to the larval forms of S. mansoni.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conjugated Linoleic Acids (CLAs) comprise a family of positional and geometric isomers of linoleic acid. The main form of CLA, cis-9, trans-11-C18:2 show positive effects in cancer prevention and treatment. The major dietary sources of these fatty acids are derived from ruminant animals, in particular dairy products. In these animals, the endogenous synthesis mainly occurs in mammary gland by the action of enzyme Stearoyl CoA Desaturase (SCD). Different levels of expression and activity of SCD in mammary gland can explain partially the variation of CLA levels in fat milk. Considering a great fat concentration in bubaline milk and the benefit of a high and positive correlation between fat milk and CLA production, this study was carried on with the intention of sequencing and characterizing part of the gene that codifies SCD in buffaloes. Genomic DNA was extracted from blood samples of lactating bubaline which begins to the breed Murrah. After the (acho que nao precisa desse the) extractions, PCR (Polymerase Chain Reaction) reactions were made by using primers Z (sic) (sic) D1 and E1 (sic) (sic) F1. The fragments obtained in PCR were cloned into T vectors and transformed in competent cells DH10B line. After this, three samples of each fragment were sequenced from 5' and 3' extremities using a BigDye kit in an automatic sequencer. Sequences were edited in a consensus of each fragment and were submitted to BLAST-n / NCBI for similarity comparisions among other species. The sequence obtained with Z (sic) (sic) D1 primers shows 938 bp enclosing exons 1 and 2 and intron 1. The primers E1 (sic) (sic) F1 show 70 bp corresponding to exon 3 of bubaline SCD gene. Similarities were obtained between 85% and 97% among bubaline sequences and sequences of SCD gene described in human, mouse, rat, swine, bovine, caprine and ovine species. This study has permitted the identification and partial characterization of SCD codifing region in Bubalus bubalis specie.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5x genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and < 5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.
Resumo:
[EN] Background: Culicoides (Diptera: Ceratopogonidae) biting midges are vectors for a diversity of pathogens including bluetongue virus (BTV) that generate important economic losses. BTV has expanded its range in recent decades, probably due to the expansion of its main vector and the presence of other autochthonous competent vectors. Although the Canary Islands are still free of bluetongue disease (BTD), Spain and Europe have had to face up to a spread of bluetongue with disastrous consequences. Therefore, it is essential to identify the distribution of biting midges and understand their feeding patterns in areas susceptible to BTD. To that end, we captured biting midges on two farms in the Canary Islands (i) to identify the midge species in question and characterize their COI barcoding region and (ii) to ascertain the source of their bloodmeals using molecular tools.Methods: Biting midges were captured using CDC traps baited with a 4-W blacklight (UV) bulb on Gran Canaria and on Tenerife. Biting midges were quantified and identified according to their wing patterns. A 688 bp segment of the mitochondrial COI gene of 20 biting midges (11 from Gran Canaria and 9 from Tenerife) were PCR amplified using the primers LCO1490 and HCO2198. Moreover, after selected all available females showing any rest of blood in their abdomen, a nested-PCR approach was used to amplify a fragment of the COI gene from vertebrate DNA contained in bloodmeals. The origin of bloodmeals was identified by comparison with the nucleotide-nucleotide basic alignment search tool (BLAST). Results: The morphological identification of 491 female biting midges revealed the presence of a single morphospecies belonging to the Obsoletus group. When sequencing the barcoding region of the 20 females used to check genetic variability, we identified two haplotypes differing in a single base. Comparison analysis using the nucleotide-nucleotide basic alignment search tool (BLAST) showed that both haplotypes belong to Culicoides obsoletus, a potential BTV vector. As well, using molecular tools we identified the feeding sources of 136 biting midges and were able to confirm that C. obsoletus females feed on goats and sheep on both islands.Conclusions: These results confirm that the feeding pattern of C. obsoletus is a potentially important factor in BTV transmission to susceptible hosts in case of introduction into the archipelago. Consequently, in the Canary Islands it is essential to maintain vigilance of Culicoides-transmitted viruses such as BTV and the novel Schmallenberg virus.
Resumo:
Pollination and seed dispersal are important ecological processes for the regeneration of plant populations and both vectors for gene exchange between plant populations. For my thesis, I studied the pollination ecology of the South African tree Commiphora harveyi (Burseraceae) and compared it with C. guillauminii from Madagascar. Both species have low visitation rates and a low number of pollinating insect species, resulting in a low fruit set. While their pollination ecology is very similar, they differ in their seed dispersal with a low seed dispersal rate in the Malagasy and a high seed dispersal rate in the South African species. This should be reflected in a stronger genetic differentiation among populations in the Malagasy than in the South African species. My results, based on AFLP markers, contradict these expectations, the overall differentiation was lower in the Malagasy (FST = 0.05) than in the South African species (FST = 0.16). However, at a smaller spatial scale (below 3 km), the Malagasy species was genetically more strongly differentiated than the South African species, which was reflected by the high inter-population variance within the sample site (C. guillauminii: 72.2 - 85.5 %; C. harveyi: 8.4 - 14.5 %). This strong differentiation could arise from limited gene flow, which was confirmed by spatial autocorrelation analyses. The shape of the autocorrelogram suggested that gene exchange between individuals occurred only up to 3 km in the Malagasy species, whereas up to 30 km in the South African species. These results on the genetic structure correspond to the expectations based on seed dispersal data. Thus, seed dispersal seems to be a key factor for the genetic structure in plant populations on a local scale.
Resumo:
Most flowering plants depend on animal vectors for pollination and seed dispersal. Differential pollinator preferences lead to premating isolation and thus reduced gene flow between interbreeding plant populations [1, 2, 3 and 4]. Sets of floral traits, adapted to attract specific pollinator guilds, are called pollination syndromes [5]. Shifts in pollination syndromes have occurred surprisingly frequently [6], considering that they must involve coordinated changes in multiple genes affecting multiple floral traits. Although the identification of individual genes specifying single pollination syndrome traits is in progress in many species, little is known about the genetic architecture of coadapted pollination syndrome traits and how they are embedded within the genome [7]. Here we describe the tight genetic linkage of loci specifying five major pollination syndrome traits in the genus Petunia: visible color, UV absorption, floral scent production, pistil length, and stamen length. Comparison with other Solanaceae indicates that, in P. exserta and P. axillaris, loci specifying these floral traits have specifically become clustered into a multifunctional “speciation island” [ 8 and 9]. Such an arrangement promotes linkage disequilibrium and avoids the dissolution of pollination syndromes by recombination. We suggest that tight genetic linkage provides a mechanism for rapid switches between distinct pollination syndromes in response to changes in pollinator availabilities.
Resumo:
Basic research in Epstein-Barr virus (EBV) molecular genetics has provided means to maintain episomes in human cells, to efficiently deliver episomes with up to 150 kbp of heterologous DNA to human B lymphocytes, and to immortalize human B lymphocytes with EBV recombinants that can maintain up to 120 kbp of heterologous DNA. Episome maintenance requires an EBV nuclear protein, EBNA1, whereas immortalization of cells with EBV recombinants requires EBNA1, EBNA2, EBNA3A, EBNA3C, EBNALP, and LMP1. EBV-derived vectors are useful for experimental genetic reconstitution in B lymphocytes, a cell type frequently used in establishing repositories of human genetic deficiencies. The ability of EBV-infected cells to establish a balanced state of persistence in normal humans raises the possibility that cells infected with EBV recombinants could be useful for genetic reconstitution, in vivo.