984 resultados para Gene Duplication


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A evolução do veneno, uma das misturas mais complexas da natureza, tem sustentado o sucesso da diversificação de inúmeras linhagens de animais. Serpentes deslizantes ou medusas flutuantes utilizam o veneno, um coquetel de peptídeos farmacologicamente ativos, sais e moléculas orgânicas. Esses animais surpreendentes têm provocado grande fascínio ao longo da história humana. Nesta dissertação propomos um estudo da evolução dos venenos no filo Cnidaria, englobando dados proteômicos e genômicos. Este projeto teve como objetivos: (1) caracterizar e elucidar a evolução da composição do veneno em Cnidaria por meio da comparação de listas de proteínas; (2) testar a hipótese de que a variação na família de toxinas específica de cnidários tem sido o resultado de um regime de seleção positiva; e (3) determinar a extensão em que a duplicação de genes pode ser considerada como a principal razão para a diversificação de toxinas em Cnidaria. O capítulo \"Comparative proteomics reveals common components of a powerful arsenal in the earliest animal venomous lineage, the cnidarians\" propõe o estudo comparado mais completo sobre a composição do veneno de cnidários e uma hipótese sobre a montagem evolutiva do complexo arsenal bioquímico de cnidários e do veneno ancestral desse grupo basal. Vinte e oito famílias de proteínas foram identificadas. Destas, 13 famílias foram registradas pela primeira vez no proteoma de Cnidaria. Pelo menos 15 famílias de toxinas foram recrutadas no proteoma de veneno de cnidários antes da diversificação dos grupos Anthozoa e Medusozoa. Nos capítulos \"Evidence of episodic positive selection in the evolution of jellyfish toxins of the cnidarian venom\" e \"Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia)\", nossas análises demonstram que as famílias de toxinas nos cnidários se diversificam amplamente mediante a duplicação de genes. Além disso, em contraste com as famílias de toxinas do veneno na maioria das linhagens animais; nós identificamos um padrão diferente na família de toxinas específica de cnidários, em que há uma seleção purificadora por longos períodos seguindo longos tempos de diversificação ou vice-versa

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pochonia chlamydosporia (Pc), a nematophagous fungus and root endophyte, uses appressoria and extracellular enzymes, principally proteases, to infect the eggs of plant parasitic nematodes (PPN). Unlike other fungi, Pc is resistant to chitosan, a deacetylated form of chitin, used in agriculture as a biopesticide to control plant pathogens. In the present work, we show that chitosan increases Meloidogyne javanica egg parasitism by P. chlamydosporia. Using antibodies specific to the Pc enzymes VCP1 (a subtilisin), and SCP1 (a serine carboxypeptidase), we demonstrate chitosan elicitation of the fungal proteases during the parasitic process. Chitosan increases VCP1 immuno-labelling in the cell wall of Pc conidia, hyphal tips of germinating spores, and in appressoria on infected M. javanica eggs. These results support the role of proteases in egg parasitism by the fungus and their activation by chitosan. Phylogenetic analysis of the Pc genome reveals a large diversity of subtilisins (S8) and serine carboxypeptidases (S10). The VCP1 group in the S8 tree shows evidence of gene duplication indicating recent adaptations to nutrient sources. Our results demonstrate that chitosan enhances Pc infectivity of nematode eggs through increased proteolytic activities and appressoria formation and might be used to improve the efficacy of M. javanica biocontrol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complete vertebrate genome sequencing has revealed a remarkable stability and uniformity in the protein-coding gene set, which at first glance might suggest that gene duplication events are relatively rare. This may be a red herring, or at least a red cichlid, as the Lake Malawi cichlid fishes show rapid and extensive duplication and diversification of their retinal cone photoreceptor opsin genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes the presence of a unique dual domain carbonic anhydrase (CA) in the giant clam, Tridacna gigas. CA plays an important role in the movement of inorganic carbon (C-i) from the surrounding seawater to the symbiotic algae that are found within the clam's tissue. One of these isoforms is a glycoprotein which is significantly larger (70 kDa) than any previously reported from animals (generally between 28 and 52 kDa). This alpha-family CA contains two complete carbonic anhydrase domains within the one protein, accounting for its large size; dual domain CAs have previously only been reported from two algal species. The protein contains a leader sequence, an N-terminal CA domain and a C-terminal CA domain. The two CA domains have relatively little identity at the amino acid level (29%). The genomic sequence spans in excess of 17 kb and contains at least 12 introns and 13 exons. A number of these introns are in positions that are only found in the membrane attached/secreted CAs. This fact, along with phylogenetic analysis, suggests that this protein represents the second example of a membrane attached invertebrate CA and it contains a dual domain structure unique amongst all animal CAs characterized to date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hannenhalli and Pevzner developed the first polynomial-time algorithm for the combinatorial problem of sorting of signed genomic data. Their algorithm solves the minimum number of reversals required for rearranging a genome to another when gene duplication is nonexisting. In this paper, we show how to extend the Hannenhalli-Pevzner approach to genomes with multigene families. We propose a new heuristic algorithm to compute the reversal distance between two genomes with multigene families via the concept of binary integer programming without removing gene duplicates. The experimental results on simulated and real biological data demonstrate that the proposed algorithm is able to find the reversal distance accurately. ©2005 IEEE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The xeroderma pigmentosum complementation group B (XPB) protein is involved in both DNA repair and transcription in human cells. It is a component of the transcription factor IIH (TFIIH) and is responsible for DNA helicase activity during nucleotide (nt) excision repair (NER). Its high evolutionary conservation has allowed identification of homologous proteins in different organisms, including plants. In contrast to other organisms, Arabidopsis thaliana harbors a duplication of the XPB orthologue (AtXPB1 and AtXPB2), and the proteins encoded by the duplicated genes are very similar (95% amino acid identity). Complementation assays in yeast rad25 mutant strains suggest the involvement of AtXPB2 in DNA repair, as already shown for AtXPB1, indicating that these proteins may be functionally redundant in the removal of DNA lesions in A. thaliana. Although both genes are expressed in a constitutive manner during the plant life cycle, Northern blot analyses suggest that light modulates the expression level of both XPB copies, and transcript levels increase during early stages of development. Considering the high similarity between AtXPB1 and AtXPB2 and that both of predicted proteins may act in DNA repair, it is possible that this duplication may confer more flexibility and resistance to DNA damaging agents in thale cress. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wydział Biologii

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genomic plasticity of human chromosome 8p23.1 region is highly influenced by two groups of complex segmental duplications (SDs), termed REPD and REPP, that mediate different kinds of rearrangements. Part of the difficulty to explain the wide range of phenotypes associated with 8p23.1 rearrangements is that REPP and REPD are not yet well characterized, probably due to their polymorphic status. Here, we describe a novel primate-specific gene family, named FAM90A (family with sequence similarity 90), found within these SDs. According to the current human reference sequence assembly, the FAM90A family includes 24 members along 8p23.1 region plus a single member on chromosome 12p13.31, showing copy number variation (CNV) between individuals. These genes can be classified into subfamilies I and II, which differ in their upstream and 5′-untranslated region sequences, but both share the same open reading frame and are ubiquitously expressed. Sequence analysis and comparative fluorescence in situ hybridization studies showed that FAM90A subfamily II suffered a big expansion in the hominoid lineage, whereas subfamily I members were likely generated sometime around the divergence of orangutan and African great apes by a fusion process. In addition, the analysis of the Ka/Ks ratios provides evidence of functional constraint of some FAM90A genes in all species. The characterization of the FAM90A gene family contributes to a better understanding of the structural polymorphism of the human 8p23.1 region and constitutes a good example of how SDs, CNVs and rearrangements within themselves can promote the formation of new gene sequences with potential functional consequences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sodium channel gene aberrations are associated with a wide range of seizure disorders, particularly Dravet syndrome. They usually consist of missense or truncating gene mutations or deletions. Duplications involving multiple genes encoding for different sodium channels are not widely known. This article summarizes the clinical, radiologic, and genetic features of patients with 2q24 duplication involving the sodium channel gene cluster.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

beta-Lactoglobulin (beta-LG) is the major whey protein in the milk of cows and other ruminants. It is well established that the predominant genetic variants beta-LG A and B are differentially expressed. Extensive investigation of the genetic variation in the promoter region of the BLG gene revealed the existence of specific haplotypes associated with the A and B variants. However, the genetic basis for the differentially expressed BLG A and B alleles is still elusive. In this study additional genetic variation further upstream in the 5'-flanking region of the BLG gene was identified, including 6 single nucleotide substitutions, a single nucleotide deletion, and a 7-bp duplication. Comparison of DNA sequences showed that the investigated 5'-flanking region is highly conserved between ruminants, and the duplication g.-1885_-1879dupCTCTCGC and the substitution g.-1888A>G are only found in the BLG A and D alleles in cattle. The cytosine at position g.-1957 and the thymines at positions g.-2008 and g.-2049 are only found in BLG B alleles of cattle. It is suggested that the described genetic variability contributes to the differential allelic expression of the BLG gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GM(1)-gangliosidosis is a lysosomal storage disease that is inherited as an autosomal recessive disorder, predominantly caused by structural defects in the beta-galactosidase gene (GLB1). The molecular cause of GM(1)-gangliosidosis in Alaskan huskies was investigated and a novel 19-bp duplication in exon 15 of the GLB1 gene was identified. The duplication comprised positions +1688-+1706 of the GLB1 cDNA. It partially disrupted a potential exon splicing enhancer (ESE), leading to exon skipping in a fraction of the transcripts. Thus, the mutation caused the expression of two different mRNAs from the mutant allele. One transcript contained the complete exon 15 with the 19-bp duplication, while the other transcript lacked exon 15. In the transcript containing exon 15 with the 19-bp duplication a premature termination codon (PTC) appeared, but due to its localization in the last exon of canine GLB1, nonsense-mediated RNA decay (NMD) did not occur. As a consequence of these molecular events two different truncated GLB1 proteins are predicted to be expressed from the mutant GLB1 allele. In heterozygous carrier animals the wild-type allele produces sufficient amounts of the active enzyme to prevent clinical signs of disease. In affected homozygous dogs no functional GLB1 is synthesized and G(M1)-gangliosidosis occurs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1–1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1–1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1–1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1–737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proteasomes are the multi-subunit protease thought to play a key role in the generation of peptides presented by major histocompatibility complex (MHC) class I molecules. When cells are stimulated with interferon gamma, two MHC-encoded subunits, low molecular mass polypeptide (LMP) 2 and LMP7, and the MECL1 subunit encoded outside the MHC are incorporated into the proteasomal complex, presumably by displacing the housekeeping subunits designated Y, X, and Z, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. Here we show that the mouse gene encoding the Z subunit (Psmb7) maps to the paracentromeric region of chromosome 2. Inspection of the mouse loci adjacent to the Psmb7 locus provides evidence that the paracentromeric region of chromosome 2 and the MHC region on chromosome 17 most likely arose as a result of a duplication that took place at an early stage of vertebrate evolution. The traces of this duplication are also evident in the homologous human chromosome regions (6p21.3 and 9q33-q34). These observations have implications in understanding the genomic organization of the present-day MHC and offer insights into the origin of the MHC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin family of serine proteinase inhibitors (serpins). A neutral form of the protein is found in normal and some malignant squamous cells, whereas an acidic form is detected exclusively in tumor cells and in the circulation of patients with squamous cell tumors. In this report, we describe the cloning of the SCCA gene from normal genomic DNA. Surprisingly, two genes were found. They were tandemly arrayed and flanked by two other closely related serpins, plasminogen activator inhibitor type 2 (PAI2) and maspin at 18q21.3. The genomic structure of the two genes, SCCA1 and SCCA2, was highly conserved. The predicted amino acid sequences were 92% identical and suggested that the neutral form of the protein was encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization of the region should determine whether the differential expression of the SCCA genes plays a causal role in development of more aggressive squamous cell carcinomas.