236 resultados para Gelation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present study is to have a detailed investigation on the gelation properties, morphology and optical properties of small π-conjugated oligomers. For this purpose we have chosen oligo(p-phenylenevinylene)s (OPVs), a class of molecules which have received considerable attention due to their unique optical and electronic properties. Though a large number of reports are available in the literature on the self-assembly properties of tailor made OPVs, none of them pertain to the design of nanostructures based on organogels. In view of this, we aimed at the creation of functional chromophoric assemblies of π-conjugated OPVs through the formation of organogels, with the objective of crafting nanoscopic assemblies of different size and shape thereby modulating their optical and electronic properties.In order to fulfill the above objectives, the design and synthesis of a variety of OPVs with appropriate structural variations were planned. The design principle involves the derivatization of OPVs with weak H-bonding hydroxymethyl end groups and with long aliphatic hydrocarbon side chains. The noncovalent interactions in these molecules were expected to lead the formation of supramolecular assembly and gels in hydrocarbon solvents. In such an event, detailed study of gelation and extensive analysis of the morphology of the gel structures were planned using advanced microscopic techniques. Since OPVs are strongly fluorescent molecules, gelation is expected to perturb the optical properties. Therefore, detailed study on the gelation induced optical properties as a way to probe the nature and stability of the selfassembly was planned. Apart from this, the potential use of the modulation of the optical properties for the purpose of light harvesting was aimed. The approach to this problem was to entrap an appropriate energy trap to the OPV gel matrix which may lead to the efficient energy transfer from the OPV gel based donor to the entrapped acceptor. The final question that we wanted to address in this investigation was the creation of helical nanostructures through proper modification of the OPV backbone With chiral handles.The present thesis is a detailed and systematic approach to the realization of the above objectives which are presented in different chapters of the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gelation provides a unique medium, which often induces organization of molecules resulting in the modulation of their optical, morphological and electronic properties thereby opening a new world of fascinating materials with interesting physical properties at nano- meso- and macroscopic levels. Supramolecular gels based on linear π-systems have attracted much attention due to their inherent optical and electronic properties which find application in organic electronics, light harvesting and sensing. They exhibit reversible properties due to the dynamic nature of noncovalent forces. As a result, studies on such soft materials are currently a topic of great interest. Recently, researchers are actively involved in the development of sensors and stimuli-responsive materials based on self-assembled π-systems, which are also called smart materials. The present thesis is divided into four chapters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultra fine nickel ferrite have been synthesized by the sol-gel method. By heat treating different portions of the prepared powder separately at different temperatures, nano-sized particles of nickel ferrite with varying particle sizes were obtained. These powders were characterised by the X-ray diffraction and then incorporated in the nitrile rubber matrix according to a specific recipe for various loadings. The cure characteristics and the mechanical properties of these rubber ferrite composites (RFCs) were evaluated. The effect of loading and the grain size of the filler on the cure characteristics and tensile properties were also evaluated. It is found that the grain size and porosity of the filler plays a vital role in determining the mechanical properties of the RFCs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of eight synthetic self-assembling terminally blocked tripeptides have been studied for gelation. Some of them form gels in various aromatic solvents including benzene, toluene, xylene, and chlorobenzene. It has been found that the protecting groups play an important role in the formation of organogels. It has been observed that, if the C-terminal has been changed from methyl ester to ethyl ester the gelation property does not change significantly (keeping the N-terminal protecting group same), while the change of the protecting group from ethyl ester to isopropyl ester completely abolishes the gelation property. Similarly, keeping the identical C-terminal protecting group (methyl ester) the results of the gelation study indicate that the substitution of N-terminal protection Boc-(tert-butyloxycarbonyl) to Cbz-(benzyloxycarbonyl) does change the gelation property insignificantly, while the change from Boc- to pivaloyl (Piv-) or acetyl (Ac-) group completely eliminates the gelation property. Morphological studies of the dried gels of two of the peptides indicate the presence of an entangled nano-fibrillar network that might be responsible for gelation. FTIR studies of the gels demonstrate that an intermolecular hydrogen bonding network is formed during gelation. Results of X-ray powder diffraction studies for these gelator peptides in different states (dried gels, gel, and bulk solids) reflected that the structure in the wet gel is distinctly different from the dried gel and solid state structures. Single crystal X-ray diffraction studies of a non-gelator peptide, which is structurally similar to the gelator molecules reveal that the peptide forms an antiparallel beta-sheet structure in crystals. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of self-assembling terminally blocked tripeptides (containing coded amino acids) form gels in various aromatic solvents including benzene, toluene, xylenes at low concentrations. However these tripeptides do not form gels in aliphatic hydrocarbons like n-hexane, cyclohexane, n-decane etc. Morphological studies of the dried gel indicate the presence of an entangled fibrous network, which is responsible for gelation. Differential scanning calorimetric (DSC) studies of the gels produced by peptide 1 clearly demonstrates thermoreversible nature of the gel and tripeptide-solvent complex may be produced during gel formation. FT-IR and H-1 NMR studies of the gels demonstrate that an intermolecular hydrogen-bonding network is formed during gelation. Single crystal X-ray diffraction studies for peptides 1, 2 and 3 have been performed to investigate the molecular arrangement that might be responsible for forming the fibrous network of these self-assembling peptide gelators. It has been found that the morph responsible for gelation of peptides 1, 2 and 3 in benzene is somewhat different from that of its xerogel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper compares and contrasts, for the first time, one- and two-component gelation systems that are direct structural analogues and draws conclusions about the molecular recognition pathways that underpin fibrillar self-assembly. The new one-component systems comprise L-lysine-based dendritic headgroups covalently connected to an aliphatic diamine spacer chain via an amide bond, One-component gelators with different generations of headgroup (from first to third generation) and different length spacer chains are reported. The self-assembly of these dendrimers in toluene was elucidated using thermal measurements, circular dichroism (CD) and NMR spectroscopies, scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS). The observations are compared with previous results for the analogous two-component gelation system in which the dendritic headgroups are bound to the aliphatic spacer chain noncovalently via acid-amine interactions. The one-component system is inherently a more effective gelator, partly as a consequence of the additional covalent amide groups that provide a new hydrogen bonding molecular recognition pathway, whereas the two-component analogue relies solely on intermolecular hydrogen bond interactions between the chiral dendritic headgroups. Furthermore, because these amide groups are important in the assembly process for the one-component system, the chiral information preset in the dendritic headgroups is not always transcribed into the nanoscale assembly, whereas for the two-component system, fiber formation is always accompanied by chiral ordering because the molecular recognition pathway is completely dependent on hydrogen bond interactions between well-organized chiral dendritic headgroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM(81) triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A self-associating synthetic tripeptide [Boc-Ala(1)-Aib(2)-beta-Ala(3)-OMe (Aib: alpha-amino-isobutyric acid, beta-Ala: beta-alanine)] forms thermoreversible transparent gels in various organic solvents and this offers the first example of a peptide gelator whose molecular self-assembly afforded for gelation has been characterised by single-crystal X-ray diffraction and FT-IR and NMR spectroscopic studies. The crystal structure of an analogous synthetic non-gelator tripeptide [Boc-Ala(1)-Gly(2)-beta-Ala(3)-OMe] is also discussed in light of the self-assembly of the gelator tripeptide. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many reports in the literature regarding the effects of ionic calcium on reactions related to casein micelle stability, such as heat stability, ethanol stability and susceptibility to gelation, sediment formation and fouling. However, experimental evidence supporting these assertions is much less readily available. This paper evaluates three selective ion electrode systems for measuring ionic calcium directly in milk as well as looking at the effects on pH reduction and addition of calcium chloride. The best electrode system was the Ciba Corning 634 system, which was designed for blood but has been modified for milk. This was found to be reproducible and stable when calibrated daily and allowed direct measurements to be taken on milk in 70 s. This has been found to perform well now for 3 years. The other systems were not so useful, as they took longer to stabilize, but may be useful for higher ionic calcium concentrations, which are found in acidified milk products. Reducing the pH increased ionic calcium and reduced ethanol stability. Calcium chloride addition reduced pH, increased ionic calcium and reduced the ethanol stability. Readjusting the pH to its value before calcium addition reduced the ionic calcium, but not back to its original value. Milks from individual cows showed wide variations in their ionic calcium concentrations. This establishes the methodology for a more detailed investigation on measurement of ionic calcium in milks from individual cows and from bulk milks, to allow a better understanding of its role in casein micelle stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of a fragment of the amyloid beta peptide that has been shown to be critical in amyloid fibrillization has been studied in aqueous solution. There are conflicting reports in the literature on the fibrillization of A beta (16-20), i.e., KLVFF, and our results shed light on this. In dilute solution, self-assembly of NH2-KLVFF-COOH is strongly influenced by aromatic interactions between phenylalanine units, as revealed by UV spectroscopy and circular dichroism. Fourier transform infrared (FTIR) spectroscopy reveals beta-sheet features in spectra taken for more concentrated solutions and also dried films. X-ray diffraction and cryo-transmission electron microscopy (cryo-TEM) provide further support for beta-sheet amyloid fibril formation. A comparison of cryo-TEM images with those from conventional dried and negatively stained TEM specimens highlights the pronounced effects of sample preparation on the morphology. A comparison of FTIR data for samples in solution and dried samples also highlights the strong effect of drying on the self-assembled structure. In more concentrated phosphate-buffered saline (PBS) solution, gelation of NH2-KLVFF-COOH is observed. This is believed to be caused by screening of the electrostatic charge on the peptide, which enables beta sheets to aggregate into a fibrillar gel network. The rheology of the hydrogel is probed, and the structure is investigated by light scattering and small-angle X-ray scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sol-gel derived inorganic materials are of interest as hosts for non-linear optically active guest molecules and they offer particular advantages in the field of non-linear optics. Orientationally ordered glasses have been prepared using a sol-gel system based on tetramethoxysilane, methyltrimethoxysilane and a non-linear optical chromophore Disperse Red 1. The novel technique of photo-induced poling was used to generate enhanced levels of polar order. The level of enhancement is strongly dependent on the extent of gelation and an optimum preparation time of ∼100 h led to an enhancement factor of ∼5. Films prepared in this manner exhibited a high stability of the polar order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A focused library of potential hydrogelators each containing two substituted aromatic residues separated by a urea or thiourea linkage have been synthesised and characterized. Six of these novel compounds are highly efficient hydrogelators, forming gels in aqueous solution at low concentrations (0.03–0.60 wt %). Gels were formed through a pH switching methodology, by acidification of a basic solution (pH 14 to ≈4) either by addition of HCl or via the slow hydrolysis of glucono-δ-lactone. Frequently, gelation was accompanied by a dramatic switch in the absorption spectra of the gelators, resulting in a significant change in colour, typically from a vibrant orange to pale yellow. Each of the gels was capable of sequestering significant quantities of the aromatic cationic dye, methylene blue, from aqueous solution (up to 1.02 g of dye per gram of dry gelator). Cryo-transmission electron microscopy of two of the gels revealed an extensive network of high aspect ratio fibers. The structure of the fibers altered dramatically upon addition of 20 wt % of the dye, resulting in aggregation and significant shortening of the fibrils. This study demonstrates the feasibility for these novel gels finding application as inexpensive and effective water purification platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of aromatic ureas have been synthesised and found to exhibit strong gelation or even supergelation characteristics in organic solvents to afford colourless or translucent gel materials. The synthesis of these materials, assessment of their gelation characteristics and rheological properties are reported in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of the alanine-rich amphiphilic peptides Lys(Ala)6Lys (KA6K) and Lys(Ala)6Glu (KA6E)with homotelechelic or heterotelechelic charged termini respectively has been investigated in aqueous solution. These peptides contain hexa-alanine sequences designed to serve as substrates for the enzyme elastase. Electrostatic repulsion of the lysine termini in KA6K prevents self-assembly, whereas in contrast KA6E is observed, through electron microscopy, to form tape-like fibrils, which based on X-ray scattering contain layers of thickness equal to the molecular length. The alanine residues enable efficient packing of the side-chains in a beta-sheet structure, as revealed by circular dichroism, FTIR and X-ray diffraction experiments. In buffer, KA6E is able to form hydrogels at sufficiently high concentration. These were used as substrates for elastase, and enzyme-induced de-gelation was observed due to the disruption of the beta-sheet fibrillar network. We propose that hydrogels of the simple designed amphiphilic peptide KA6E may serve as model substrates for elastase and this could ultimately lead to applications in biomedicine and regenerative medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we introduce dipeptides containing tryptophan N-capped with the nonsteroidal anti-inflammatory drug naproxen and C-terminal dehydroamino acids, dehydrophenylalanine (ΔPhe), dehydroaminobutyric acid (ΔAbu), and dehydroalanine (ΔAla) as efficacious protease resistant hydrogelators. Optimized conditions for gel formation are reported. Transmission electron microscopy experiments revealed that the hydrogels consist of networks of micro/nanosized fibers formed by peptide self-assembly. Fluorescence and circular dichroism spectroscopy indicate that the self-assembly process is driven by stacking interactions of the aromatic groups. The naphthalene groups of the naproxen moieties are highly organized in the fibers through chiral stacking. Rheological experiments demonstrated that the most hydrophobic peptide (containing C-terminal ΔPhe) formed more elastic gels at lower critical gelation concentrations. This gel revealed irreversible breakup, while the C-terminal ΔAbu and ΔAla gels, although less elastic, exhibited structural recovery and partial healing of the elastic properties. A potential antitumor thieno[3,2-b]pyridine derivative was incorporated (noncovalently) into the gel formed by the hydrogelator containing C-terminal ΔPhe residue. Fluorescence and Förster resonance energy transfer measurements indicate that the drug is located in a hydrophobic environment, near/associated with the peptide fibers, establishing this type of hydrogel as a good drug-nanocarrier candidate.