988 resultados para Gaussian quadrature formulas
Resumo:
The aim of the study was to evaluate whether supplementation of milk-formulas with prebiotic fructooligosaccharides or a probiotic, Lactobacillus johnsonii La1 (La1), could modulate the composition of the fecal microbiota of formula-fed infants, compared to breastfed (BF) infants. Ninety infants close to 4 months of age were randomized into one of three groups to be blindly assigned to receive for 13 weeks: a) an infant formula (Control), b) the same formula with fructo-oligosaccharides (Prebio), or c) with La1 (Probio). At the end of this period, all infants received the control formula for 2 additional weeks. Twenty-six infants, breastfed throughout the study, were recruited to form group BF. Fecal samples were obtained upon enrolment and after 7 and 15 weeks. Bacterial populations were assessed with classical culture techniques and fluorescent in situ hybridisation (FISH). Seventy-six infants completed the study. On enrolment, higher counts of Bifidobacterium and Lactobacillus and lower counts of enterobacteria were observed in BF compared to the formula-fed infants; these differences tended to disappear at weeks 7 and 15. No major differences for Clostridium, Bacteroides or Enterococcus were observed between the groups or along the follow up. Probio increased fecal Lactobacillus counts (P<0.001); 88% of the infants in this group excreted live La1 in their stools at week 7 but only 17% at week 15. Increased Bifidobacterium counts were observed at week 7 in the 3 formula groups, similar to BF infants. These results confirm the presence of higher counts of bifidobacteria and lactobacilli in the microbiota of BF infants compared to formula-fed infants before dietary diversification, and that La1 survives in the infant digestive tract.
Gabor wavelets and Gaussian models to separate ground and non-ground for airborne scanned LIDAR data
Resumo:
A beamforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation schemes. The proposed minimum approximate bit error rate (ABER) beamforming approach does not rely on the Gaussian assumption of the channel noise. Therefore, this approach is also applicable when the channel noise is non-Gaussian. The simulation results show that the proposed minimum ABER solution improves the standard minimum mean squares error beamforming solution, in terms of a smaller achievable system's bit error rate.
Resumo:
Gaussian multi-scale representation is a mathematical framework that allows to analyse images at different scales in a consistent manner, and to handle derivatives in a way deeply connected to scale. This paper uses Gaussian multi-scale representation to investigate several aspects of the derivation of atmospheric motion vectors (AMVs) from water vapour imagery. The contribution of different spatial frequencies to the tracking is studied, for a range of tracer sizes, and a number of tracer selection methods are presented and compared, using WV 6.2 images from the geostationary satellite MSG-2.
Resumo:
Radial basis function networks can be trained quickly using linear optimisation once centres and other associated parameters have been initialised. The authors propose a small adjustment to a well accepted initialisation algorithm which improves the network accuracy over a range of problems. The algorithm is described and results are presented.
Resumo:
Harmonic analysis on configuration spaces is used in order to extend explicit expressions for the images of creation, annihilation, and second quantization operators in L2-spaces with respect to Poisson point processes to a set of functions larger than the space obtained by directly using chaos expansion. This permits, in particular, to derive an explicit expression for the generator of the second quantization of a sub-Markovian contraction semigroup on a set of functions which forms a core of the generator.
Resumo:
ABSTRACT Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Three different measures of observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity is a strong function of the value of the observation and proportional to the posterior variance. Similarly, relative entropy is found to be a strong function of the value of the observation. However, the errors in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These findings are illustrated with the particle filter applied to the Lorenz ’63 system. This article is concluded with a discussion of the appropriateness of these measures of observation impact for different situations.
Resumo:
In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT.
Resumo:
We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions. Copyright © 2011 Royal Meteorological Society
Resumo:
In this study, dual-hop channel state information-assisted amplify-and-forward (AF) cooperative systems in the presence of in-phase and quadrature-phase (I/Q) imbalance, which refers to the mismatch between components in the I and Q branches, are investigated. First, the authors analyse the performance of the considered AF cooperative protocol without compensation for the I/Q imbalance as the benchmark. Then, a compensation algorithm for the I/Q imbalance is proposed, which makes use of the received signals at the destination, from the source and the relay nodes, together with their conjugations to detect the transmitted signal. Moreover, the authors study the considered AF cooperative system implemented with the opportunistic relay selection and the proposed compensation mechanism for the I/Q imbalance. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability, which is derived by considering transmission in a Rayleigh fading environment. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of the I/Q imbalance. On the other hand, it is observed that the AF cooperative system with opportunistic relay selection acquires a performance gain beyond that without relay selection.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure.
Resumo:
The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.