182 resultados para Galvanostatic anodization
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.
Resumo:
We prepared a W/WO3/TiO2 bicomposite photoanode by simple electrochemical anodization of W foil, followed by cathodic electrodeposition of TiO2 and annealing at 450 C for 30 min. This photoanode shows good photoactivity under irradiation with UV and visible light. In optimized conditions, it promotes complete photoelectrocatalytic oxidation of 3.33 × 10-5 mol L-1 basic red 51 solution (which is used in hair dye) at 0.1 mol L-1 Na2SO4, pH 2.0, under a current density of 1.25 mA cm-2 and ultraviolet and visible radiation-total organic carbon removal is 94 and 88%, respectively. This effect paves the way for the sustainable solar-assisted remediation of water bodies contaminated with organic components of hair dyes. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this report we track the structural changes suffered by ITO along galvanostatic polarization at different current densities by X-ray diffraction and SEM micrographs. The XRD shown that cathodic treatment induces structural change in ITO, characterized by appearing peaks set distinct from ITO original structure associated to metallic phase of the solid solution of In-Sn. It is interesting to note that although the different ions present in the solution are not, at least to a noticeable degree, incorporated in the metallic phase, the SEM images show that they do influence its formation, pointing to some type of adsorptive mechanism of the inert ions during the lateral diffusion of the metallic ions. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)