902 resultados para Gallium addition
Resumo:
In this study, the effect of nano-B4C addition on the microstructural and the mechanical behavior of pure Mg are investigated. Pure Mg-metal reinforced with different amounts of nano-size B4C particulates were synthesized using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the developed Mg/x-B4C composites revealed uniform distribution of nano-B4C particulates and significant grain refinement. Electron back scattered diffraction (EBSD) analyses showed presence of relatively more recrystallized grains and absence of fiber texture in Mg/B4C nanocomposites when compared to pure Mg. The evaluation of mechanical properties indicated a significant improvement in tensile properties of the composites. The significant improvement in tensile ductility (similar to 180% increase with respect to pure Mg) is among the highest observed when compared to the pure Mg based nanocomposites existing in the current literature. The superior mechanical properties of the Mg/B4C nanocomposites are attributed to the uniform distribution of the nanoparticles and the tendency for texture randomization (absence of fiber texture) achieved due to the nano-B4C addition. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The addition of B, up to about 0.1 wt%, to Ti-6Al-4V (Ti64) reduces its as-cast grain and colony sizes by an order of magnitude. In this paper, the creep resistance of this alloy modified with 0.06 and 0.11 wt% B additions was investigated in the temperature range of 475-550 degrees C and compared with that of the base alloy. Conventional dead-weight creep tests as well as stress relaxation tests were employed for this purpose. Experimental results show that the B addition enhances both elevated temperature strength and creep properties of Ti64, especially at the lower end of the temperatures investigated. The steady state creep rate in the alloy with 0.11 wt% B was found to be an order of magnitude lower than that in the base alloy, and both the strain at failure as well as the time for rupture increases with the B content. These marked improvements in the creep resistance due to B addition to Ti64 were attributed primarily to the increased number of inter-phase interfaces - a direct consequence of the microstructural refinement that occurs with the B addition - that provide resistance to dislocation motion. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.
Resumo:
Ti-6Al-4V is widely used to prepare biomedical implant for orthopaedic and dental applications, but it is an expensive choice relative to other implant materials such as stainless steels and Co-Cr alloys, in large part due to the high manufacturing cost. Adding boron to refine the as cast microstructure of Ti-6Al-4V can eliminate the need for extensive hot working and thereby reduce processing costs. The effect of 0.1 wt-% boron addition and the choice of processing route (forging or extrusion) was studied in the context of potential biomedical applications. Corrosion tests in simulated body fluid indicated that the presence of boron increased the corrosion rate of Ti-6Al-4V and that the increase was higher for forged alloys than for extruded alloys. Boron addition and processing route were found to have a minimal effect on the viability of osteoblasts on the alloy surfaces. It is concluded that the addition of boron could offer advantages during the processing of Ti-6Al-4V for biomedical applications.
Resumo:
Density reduction of automotive steels is needed to reduce fuel consumption, thereby reducing greenhouse gas emissions. Aluminum addition has been found to be effective in making steels lighter. Such an addition does not change the crystal structure of the material. Steels modified with aluminum possess higher strength with very little compromise in ductility. In this work, different compositions of Fe-Al systems have been studied so that the desired properties of the material remain within the limit. A density reduction of approximately 10% has been achieved. The specific strength of optimal Fe-Al alloys is higher than conventional steels such as ultra-low-carbon steels.
Resumo:
In this study, the effects of nanoscale ZnO reinforcement on the room temperature tensile and compressive response of monolithic Mg were studied. Experimental observations indicated strength properties improvement due to nanoscale ZnO addition. A maximum increment in tensile yield strength by similar to 55% and compressive yield strength by 90% (with reduced tension-compression asymmetry) was achieved when 0.8 vol.% ZnO nanoparticles were added to Mg. While the fracture strain values under tensile loads were found to increase significantly (by similar to 95%, in case of Mg-0.48ZnO), it remained largely unaffected under compressive loads. The microstructural characteristics studied in order to comprehend the mechanical response showed significant grain refinement due to grain boundary pinning effect of nano-ZnO particles which resulted in strengthening of Mg. Texture analysis using X-ray and EBSD methods indicated weakening of basal fibre texture in Mg/ZnO nanocomposites which contributed towards the reduction in tension-compression yield asymmetry and enhancement in tensile ductility when compared to pure Mg. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The first organocatalytic asymmetric reaction of 3-isothiocyanatooxindoles with nitro olefins has been developed by using a cinchonidine-derived bifunctional catalyst. The resulting products, highly functionalized 3,2-pyrrolidinyl-substituted spirooxindole derivatives, were obtained in high yields with good diastereo- and enantioselectivities (up to dr >20:1 and er = 96:4). This Michael addition/cyclization cascade reaction employs monosubstituted nitro olefins and complements the Zn-II-catalyzed variant, which is only applicable to disubstituted nitro olefins.
Resumo:
Retaining the morphology of gallium oxide nanostructures during structural transformations or after doping with lanthanide ions is not facile. Here we report on the sonochemical synthesis of nearly monodisperse similar to 550 nm long nano-spindles of undoped and La-doped alpha-GaOOH. The transformation of as-prepared undoped and La-doped alpha-GaOOH powders into the corresponding undoped and La-doped Ga2O3 phases (alpha and beta) was achieved by carrying out controlled annealing at elevated temperatures under optimized conditions. The formation of gallium oxide nano-spindles is explained by invoking the phenomenon of oriented attachment, as amply supported by electron microscopy. Interestingly, the morphology of the gallium oxide nano-spindles remained conserved even after doping them with more than 1.4 at% of La3+ ions. Such robust structural stability could be attributed to the oriented attachment-type growth observed in the nano-spindles. The as-prepared samples and the corresponding annealed ones were thoroughly characterized by powder X-ray diffraction (PXRD), electron microscopy (SEM, TEM, and STEM-EDS) and X-ray photoelectron spectroscopy (XPS). Finally, photoluminescence from the single-crystalline undoped and La-doped beta-Ga2O3 was explored.
Resumo:
Recently, research in copper based quaternary chalcogenide materials has focused on the study of thermoelectric properties due to the complexity in the crystal structure. In the present work, stoichiometric quaternary chalcogenide compounds Cu2+xCd1-x,GeSe4 (x = 0, 0.025, 0.05, 0.075, 0.1, 0.125) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I-42m of the main phase, whereas the samples with x = 0 and x = 0.025 revealed the presence of an orthorhombic phase in addition to the main phase as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 300 K-723 K. The electrical conductivity of all the samples increased with increasing Cu content due to the enhancement of the hole concentration caused by the substitution of Cd (divalent) by Cu (monovalent). The positive Seebeck coefficient of all the samples in the entire temperature ranges indicates that holes are the majority carriers. The Seebeck coefficient of all the samples decreased with increasing Cu content and showed a reverse trend to the electrical conductivity. The total thermal conductivity of all the samples decreased with increasing temperature which was dominated by the lattice contribution. The maximum figure of merit ZT = 0.42 at 723 K was obtained for the compound Cu2.1Cd0.9GeSe4. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Itaconic acid is a bio-sourced dicarboxylic acid that carries a double bond; although several reports have dealt with the radical-initiated chain polymerization of dialkyl itaconates, only a few studies have utilized it as a di-acid monomer to prepare polyesters. In this study, we demonstrate that dibutyl itaconate can be melt-condensed with aliphatic diols to generate unsaturated polyesters; importantly, we show that the double bonds remain unaffected during the melt polymerization. A particularly useful attribute of these polyesters is that the exo-chain double bonds are conjugated to the ester carbonyl and, therefore, can serve as excellent Michael acceptors. A variety of organic thiols, such as alkane thiols, MPEG thiol, thioglycerol, derivatized cysteine etc., were shown to quantitatively Michael-add to the exo-chain double bonds and generate interesting functionalized polyesters. Similarly, organic amines, such as N-methyl-benzylamine, diallyl amine and proline, also add across the double bond; thus, these poly(alkylene itaconate)s could serve as potentially bio-benign polyesters that could be quantitatively transformed into a variety of interesting and potentially useful functionalized polymers.
Resumo:
The present paper reports a new class of Co based superalloys that has gamma-gamma' microstructure and exhibits much lower density compared to other commercially available Co superalloys including Co-Al-W based alloys. The basic composition is Co-10Al-5Mo (at%) with addition of 2 at% Ta for stabilization of gamma' phase. The gamma-gamma' microstructure evolves through solutionising and aging treatment. Using first principles calculations, we observe that Ta plays a crucial role in stabilizing gamma' phase. By addition of Ta in the basic stoichiometric composition Co-3(Al, Mo), the enthalpy of formation (Delta H-f) of L1(2) structure (gamma' phase) becomes more negative in comparison to DO19 structure. The All of the L12 structure becomes further more negative by the occupancy of Ni and Ti atoms in the lattice suggesting an increase in the stability of the gamma' precipitates. Among large number of alloys studied experimentally, the paper presents results of detailed investigations on Co-10Al-5Mo-2Ta, Co-30Ni-10Al-5Mo-2Ta and Co-30Ni-10Al-5Mo-2Ta-2Ti. To evaluate the role alloying elements, atom probe tomography investigations were carried out to obtain partition coefficients for the constituent elements. The results show strong partitioning of Ni, Al, Ta and Ti in ordered gamma' precipitates. 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
It has been previously reported that the addition of boron to Ti-6Al-4V results in significant refinement of the as-cast microstructure and enhancement in the strain hardening. However, the mechanism for the latter effect has not been adequately studied. The aim of this study was to understand the reasons for the enhancement in room temperature strain hardening on addition of boron to as cast Ti-6Al-4V alloy. A study was conducted on slip transmission using SEM, TEM, optical profilometry and four point probe resistivity measurements on un-deformed and deformed samples of Ti-6Al-4V-xB with five levels of boron. Optical profilometry was used to quantify the magnitude of offsets on slip traces which in turn provided information about the extent of planar or multiple slip. Studies on deformed samples reveal that while lath boundaries appear to easily permit dislocation slip transmission, colony boundaries are potent barriers to slip. From TEM studies it was also observed that while alloys containing lower boron underwent planar slip, deformation was more homogeneous in higher boron alloys due to multiple slip resulting from large number of colony boundaries. Multiple slip is also proposed to be the prime cause of the enhanced strain hardening.
Resumo:
A detailed study of tetrathiomolybdate mediated tandem regio- and stereoselective ring opening of aziridine, disulfide formation, reduction of disulfide bond and Michael reaction in a one-pot operation is reported. This constitutes four reactions that take place in one-pot operation. In the reaction of BnEt3N](4)MoS4 with an aziridine derived from cyclohexene and in the absence of Michael acceptor intermediates sulfonamidodisulfide and sulfonamidothiol were isolated and fully characterized. It has also been shown that it is possible to carry out selective opening of the aziridine ring in the presence of an epoxide. By incorporating a suitable Michael acceptor as part of the substrate, intramolecular 1,4-addition could be performed, to achieve the synthesis of sulfur containing acyclic, cyclic amino acid ester derivatives and thia-bicyclo3.3.1]nonane derivatives in good yields. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The present study elucidates the effects of nanoscale boron nitride particles addition on the microstructural and mechanical characteristics of monolithic magnesium. Novel light-weight Mg nanocomposites containing 0.3, 0.6 and 1.2vol% nano-size boron nitride particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. Microstructural characterization of developed Mg/x-boron nitride composites revealed significant grain refinement due to the uniform distribution of nano-boron nitride particulates. Texture analysis of selected Mg-1.2 boron nitride nanocomposite showed an increase in the intensity of fiber texture alongside enhanced localized recrystallization when compared to monolithic Mg. Mechanical properties evaluation under indentation, tension and compression loading indicated superior response of Mg/x-boron nitride composites in comparison to pure Mg. The uniform distribution of nanoscale boron nitride particles and the modified crystallographic texture achieved due to the nano-boron nitride addition attributes to the superior mechanical characteristics of Mg/boron nitride nanocomposites.