1000 resultados para GSD influence
Resumo:
The objective of this work was to evaluate the influence of different carbon sources and the carbon/nitrogen ratio (C/N) on the production and main composition of insoluble extracellular polymers (EPS) produced in an anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized biomass in polyurethane foam. The yield of EPS was 23.6 mg/g carbon, 13.3 mg/g carbon, 9.0 mg/g carbon and 1.4 mg/g carbon when the reactor was fed with glucose, soybean oil. fat acids, and meat extract, respectively. The yield of EPS decreased from 23.6 to 2.6 mg/g carbon as the C/N ratio was decreased from 13.6 to 3.4 gC/gN, using glucose as carbon source. EPS production was not observed under strict anaerobic conditions. The results suggest that the carbon source, microaerophilic conditions and high C/N ratio favor EPS production in the ASBBR used for wastewater treatment. Cellulose was the main exopolysaccharide observed in all experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1) of LAS, kept at 30 +/- 2 degrees C and operated with a hydraulic retention time (HRT) of 12 h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 ring l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorgan isms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Safe application of the anaerobic sequencing biofilm batch reactor (ASBBR) still depends on deeper insight into its behavior when faced with common operational problems in wastewater treatments such as tolerance to abrupt variations in influent concentration, so called shock loads. To this end the current work shows the effect of organic shock loads on the performance of an ASBBR, with a useful volume of 5 L, containing 0.5-cm polyurethane cubes and operating at 30 degrees C with mechanical stirring of 500 rpm. In the assays 2 L of two types of synthetic wastewater were treated in 8-h cycles. Synthetic wastewater I was based on sucrose-amide-cellulose with concentration of 500 mg COD/L and synthetic wastewater II was based on volatile acids with concentration ranging from 500 to 2000 mg COD/L. Organic shock loads of 2-4 times the operation concentration were applied during one and two cycles. System efficiency was monitored before and after application of the perturbation. When operating with concentrations from 500 to 1000 mg COD/L and shock loads of 2-4 times the influent concentration during one or two cycles the system was able to regain stability after one cycle and the values of organic matter, total and intermediate volatile acids, bicarbonate alkalinity and pH were similar to those prior to the perturbations. At a concentration of 2000 mg COD/L the reactor appeared to be robust, regaining removal efficiencies similar to those prior to perturbation at shock loads twice the operation concentration lasting one cycle and stability was recovered after two cycles. However, for shock loads twice the operation concentration during two cycles and shock loads four times the operation concentration during one or two cycles filtered sample removal efficiency decreased to levels different from those prior to perturbation, on an average of 90-80%, approximately, yet the system managed to attain stability within two cycles after shock application. Therefore, this investigation envisions the potential of full scale application of this type of bioreactor which showed robustness to organic shock loads, despite discontinuous operation and the short times available for treating total wastewater volume. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamic behavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results showed that the presence of immobilized biomass increased particle density and altered the main fluid dynamic parameters investigated.
Resumo:
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Polarization measurements were conducted to monitor the corrosion behavior of superduplex stainless steel ASTM A995M-Gr.SA/EN 10283-Mat#1.4469(GX2CrNiMo26-7-4) when exposed to a) an electrolyte containing 22,700 parts per million (ppm) of chloride ions at seven different temperatures and b) an electrolyte at 25 GC and different chloride ion concentrations (5800, 22,700, 58,000 and 80,000 ppm of Cl(-)). The polarization curves indicate that the passive films formed are only slightly affected by NaCl concentration, but the pitting potential decreases drastically increasing the temperature, in particular >60 degrees C. The image analysis of the microstructure after potentiodynamic polarization showed that the pitting number and size vary in function of the temperature of the tested medium. Nyquist diagrams were determined by electrochemical impedance spectroscopy to characterize the resistance of the passive layer. According to Nyquist plots, the arc polarization resistance decreases increasing the temperature due to a catalytic degradation of the oxide passive films. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N-dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt % at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 785-791, 2010
Resumo:
In repair works of reinforced concrete, patch repairs tend to crack in the interfacial zone between the mortar and the old concrete. This occurs basically due to the high degree of restriction that acts on a patch repair. For this reason, the technology of patch repair needs to be the subject of a discussion involving professionals who work with projects, construction maintenance and mix proportioning of repair mortars. In the present work, a study is presented on the benefits that the ethylene vinyl acetate copolymer (EVA) and acrylate polymers can provide in the mix proportioning of a repair mortar with respect to compressive, tensile and direct-shear bond strength. The results indicated that the increase in bond strength and the reduction in the influence of the deficiency in Curing conditioning are the main contributions offered by the polymers studied here. (C) 2009 Elsevier, Ltd. All rights reserved.
Resumo:
Chloride migration tests are used to measure the concrete capacity to inhibit chloride attack. Many researchers carry out this test in a slice of concrete extracted from the central part of cylindrical specimens, discarding about 75% of the concrete used to mold the specimens. This fact generated the question: would it be possible to extract more slices from a same specimen without losing the confidence in the results? The main purpose of this work is to answer this question. Moreover, another aim of this study was to show the difference of chloride penetration between finished faces and the formwork surfaces of concrete beams and slabs. The results indicated that it is possible to use more slices of a single specimen for a chloride migration test. Moreover, it was demonstrated that there is a significant difference of chloride penetration between the finished surface and the formwork surface of the specimens. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient still needs more research. The aim of this paper is to study the efficacy of certain surface treatments (such as hydrophobic agents, acrylic coating, polyurethane coating and double systems) in inhibiting chloride penetration in concrete. The results indicated that all tested surface protection significantly reduced the sorptivity of concrete (reduction rate > 70%). However, only the polyurethane coating was highly effective in reducing the chloride diffusion coefficient (reduction rate of 86%). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Adhesive mortars are widely used to set porcelain stoneware tiles on buildings because their bond strength and flexibility properties increase the cladding serviceability. However, their long-term performance is not well understood, mainly the degradation of the polymeric matrix. The influence of moisture content on the flexibility of six adhesive mortars is investigated, based on standard EN 12002. Four of them have defined formulations and the other two are commercial and are widely used to set porcelain stoneware tiles on building facades in Brazil. The results show that moisture content above 6% is sufficient to reduce 50% of the mortar deformability, but that the drying process allows it to recover to a value similar to that prior to saturation; a logarithmic function best fits the correlation between moisture content and flexibility; water immersion increases matrix rigidity. It is suggested that standards should consider flexibility tests on both dried and wet samples as a requirement for polymer-modified mortars. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The single phase induction motors needs two stator windings to produce rotating magnetic field : one main winding and the other auxiliary winding. The aim of the auxiliary winding is to create the rotating electromagnetic field when the machine is started-up and is afterwards turned off, generally through the centrifugal switch coupled together with the shaft of the machine rotor. The main purpose of this document is to evaluate the influence that the two windings have on the external characteristics of the single phase induction motor. For this purpose, two different kinds of windings were carried out and simulated, with the proposal to obtain some benefits. The main winding and the auxiliary winding were prepared and mounted on a prototype. The simulation was done via software based FEM, to make the extraction and results analysis possible. This results are shown at the end this document.
Resumo:
The magnetic Barkhausen noise (MBN) is a phenomenon sensitive to several kinds of magnetic material microstructure changes, as well as to variations in material plastic deformation and stress. This fact stimulates the development of MBN-based non-destructive testing (NDT) techniques for analyzing magnetic materials, being the proposition of such a method, the main objective of the present study. The behavior of the MBN signal envelope, under simultaneous variations of carbon content and plastic deformation, is explained by the domain wall dynamics. Additionally, a non-destructive parameter for the characterization of each of these factors is proposed and validated through the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents the results of an experimental study on pure refrigerant R-134a and refrigerant-oil mixtures flowing through capillary tubes in order to analyse the oil influence in component performance. Tests were carried out for capillary tubes internal diameters of 0.69 mm and 0.82 mm, condensing temperatures ranging from 40 degrees C to 50 degrees C, and subcooling degrees between 3 degrees C and 12 degrees C. Pure refrigerant flow measurements were compared to those for refrigerant-oil mixtures with oil concentrations of 1.0% and 3.0%. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the unlubricated sliding wear of steels the mild-severe and severe-mild wear transitions have long been investigated. The effect of system inputs such as normal load, sliding speed, environment humidity and temperature, material properties, among others, on those transitions have also been studied. Although transitions seem to be caused by microstructural changes, surfaces oxidation and work-hardening, some questions remain regarding the way each aspect is involved. Since the early studies in sliding wear, it has usually been assumed that only the material properties of the softer body influence the wear behavior of contacting surfaces. For example, the Archard equation involves only the hardness of the softer body, without considering the hardness of the harder body. This work aims to discuss the importance of the harder body hardness in determining the wear regime operation. For this, pin-on-disk wear tests were carried out, in which the disk material was always harder than the pin material. Variations of the friction force and vertical displacement of the pin were registered during the tests. A material characterization before and after tests was conducted using stereoscopy and scanning electron microscopy (SEM) methods, in addition to mass loss, surface roughness and microhardness measurements. The wear results confirmed the occurrence of a mild-severe wear transition when the disk hardness was decreased. The disk hardness to pin hardness ratio (H(d)/H(p)) was used as a criterion to establish the nature of surface contact deformation and to determine the wear regime transition. A predominantly elastic or plastic contact, characterized by H(d)/H(p) values higher or lower than one, results in a mild or severe wear regime operation, respectively. (c) 2009 Elsevier B.V. All rights reserved.