966 resultados para GROUP-VELOCITY DISPERSION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using a one-dimensional self-consistent relativistic fluid model, an investigation is made numerically on relativistic electromagnetic solitons with a high intensity in cold overdense plasmas with an electrons' initial velocity opposite to the laser propagating direction. Two types of standing solitons with zero group velocity are found at the given electrons' initial velocities. One is single-humped with a weakly relativistic intensity; the another is multi-humped with a strong relativistic amplitude. The properties of these two types of solitons are presented in detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On the materials scale, thermoelectric efficiency is defined by the dimensionless figure of merit zT. This value is made up of three material components in the form zT = Tα2/ρκ, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the total thermal conductivity. Therefore, in order to improve zT would require the reduction of κ and ρ while increasing α. However due to the inter-relation of the electrical and thermal properties of materials, typical routes to thermoelectric enhancement come in one of two forms. The first is to isolate the electronic properties and increase α without negatively affecting ρ. Techniques like electron filtering, quantum confinement, and density of states distortions have been proposed to enhance the Seebeck coefficient in thermoelectric materials. However, it has been difficult to prove the efficacy of these techniques. More recently efforts to manipulate the band degeneracy in semiconductors has been explored as a means to enhance α.

The other route to thermoelectric enhancement is through minimizing the thermal conductivity, κ. More specifically, thermal conductivity can be broken into two parts, an electronic and lattice term, κe and κl respectively. From a functional materials standpoint, the reduction in lattice thermal conductivity should have a minimal effect on the electronic properties. Most routes incorporate techniques that focus on the reduction of the lattice thermal conductivity. The components that make up κl (κl = 1/3Cνl) are the heat capacity (C), phonon group velocity (ν), and phonon mean free path (l). Since the difficulty is extreme in altering the heat capacity and group velocity, the phonon mean free path is most often the source of reduction.

Past routes to decreasing the phonon mean free path has been by alloying and grain size reduction. However, in these techniques the electron mobility is often negatively affected because in alloying any perturbation to the periodic potential can cause additional adverse carrier scattering. Grain size reduction has been another successful route to enhancing zT because of the significant difference in electron and phonon mean free paths. However, grain size reduction is erratic in anisotropic materials due to the orientation dependent transport properties. However, microstructure formation in both equilibrium and nonequilibrium processing routines can be used to effectively reduce the phonon mean free path as a route to enhance the figure of merit.

This work starts with a discussion of several different deliberate microstructure varieties. Control of the morphology and finally structure size and spacing is discussed at length. Since the material example used throughout this thesis is anisotropic a short primer on zone melting is presented as an effective route to growing homogeneous and oriented polycrystalline material. The resulting microstructure formation and control is presented specifically in the case of In2Te3-Bi2Te3 composites and the transport properties pertinent to thermoelectric materials is presented. Finally, the transport and discussion of iodine doped Bi2Te3 is presented as a re-evaluation of the literature data and what is known today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With one weak probe field and two strong pumping fields, superluminal optical solitons are formed in a lifetime-broadened four-level tripod atomic medium. With proper parameters, both dark and bright solitons can occur in the highly resonant medium. The corresponding group velocity of the solitons can be superluminal. Meanwhile, the conditions for superluminal solitons occurrence are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With one weak probe field and two strong pumping fields, the possibility of producing superluminal optical solitons is discussed in a lifetime-broadened inverted-Y atomic medium with proper parameters. As the group velocity of the solitons is larger than c, its occurrence can be controlled by modulating the intensities and the detunings of lasers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

基于能量守恒和三波耦合波方程, 建立了超短脉冲在参变过程中二次谐波产生时的I类和II类相位匹配条件、基波与谐波之间的群速延迟时间、以及群速失配对晶体长度限制的理论基础。以负单轴非线性光学晶体CsLiB6O10为例, 分析和数值计算了超短脉冲宽度为100 fs时, 谐波的群速匹配长度随基波波长变化的规律。研究结果表明在I类相位匹配条件下, 基波波长为642 nm时, 群速延迟最小, 相应的群速匹配晶体长度最长为19.1 mm;在II类相位匹配条件下, 基波波长为767 nm, 群速延迟最小, 群速匹配长度最

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

由于群速度失配的影响,飞秒光脉冲在感应到FONPS(级联五阶非线性相移)的同时,将不可避免地发生脉冲畸变.通过理论分析及数值模拟,提出了使级联五阶非线性过程运行在较大相位失配条件下的解决方案,成功地消除了脉冲畸变.并且借助于该过程中倍频效率的提高,有效地补偿由于相位失配量的增大所造成的FONPS的下降,实现飞秒基频光脉冲在感应到大的FONPS的同时无脉冲畸变发生.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

从理论上推导了第Ⅱ类相位匹配下宽带飞秒脉冲的二次谐波光场,分析输入飞秒脉冲的非共线相位匹配方式、脉冲带宽引起相位失配与群速失配对测量的影响。结果表明,为了消除飞秒脉冲的带宽影响,需要对测量记录的光强乘以一个调制因子;测量相位误差与非共线相位匹配的夹角和晶体长度成正比;相位失配与群速失配产生相位测量误差,且第Ⅱ类相位匹配方式下脉冲附加相位值较大;强度和相位误差需要在脉冲重建结果中补偿。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

阐述了用光学薄膜进行色散补偿的基本原理,介绍了设计的基本过程.根据Ti:Sapphire飞秒激光器中腔内色散补偿的要求,设定了色散补偿目标,通过计算机优化,得到了一种40层的Ta2O5/SiO2介质膜系.该膜系能在720~870am范围获得大于99.5%的反射率,在510~550nm获得大于90%的透射率,在740~850nm提供较平滑的-40fs^2的群延迟色散.这样的结果经过7次反射后,可以补偿5-mm Ti:sapphire晶体产生的绝大部分群延迟色散。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article contains a review of modal stability theory. It covers local stability analysis of parallel flows including temporal stability, spatial stability, phase velocity, group velocity, spatio-temporal stability, the linearized Navier-Stokes equations, the Orr-Sommerfeld equation, the Rayleigh equation, the Briggs-Bers criterion, Poiseuille flow, free shear flows, and secondary modal instability. It also covers the parabolized stability equation (PSE), temporal and spatial biglobal theory, 2D eigenvalue problems, 3D eigenvalue problems, spectral collocation methods, and other numerical solution methods. Computer codes are provided for tutorials described in the article. These tutorials cover the main topics of the article and can be adapted to form the basis of research codes. Copyright © 2014 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the research on the transmission characteristic of slow-light-mode in the photonic crystal line-defect waveguide bends on SOL After optimizing the structure parameters in the vicinity of the bends, the normalized transmission efficiency of slow-light-mode through the photonic crystal 60 degree and 120 degree waveguide bends are as high as 80% and 60% respectively, which are 10 times higher than that in the undeformed case. To slow down light further, we design novel coupled cavity waveguide bend structures with high quality-factor. High normalized transmission efficiency of 75% and low group velocity of c/170 ( c is the light velocity in vacuum) are realized. These results are beneficial to enhance the slow light effect of photonic crystal structures and improve the miniaturization and integration of photonic crystal slow light devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate a photonic crystal hetero-waveguide based on silicon-on-insulator (SOI) slab, consisting of two serially connected width-reduced photonic crystal waveguides with different radii of the air holes adjacent to the waveguide. We show theoretically that the transmission window of the structure corresponds to the transmission range common to both waveguides and it is in inverse proportion to the discrepancy between the two waveguides. Also the group velocity of guided mode can be changed from low to high or high to low, depending on which port of the structure the signal is input from just in the same device, and the variation is proportional to the discrepancy between the two waveguides. Using this novel structure, we realize flexible control of transmission window and group velocity of guided mode simultaneously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the, fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The propagation losses in single-line defect waveguides in a two-dimensional (2D) square-lattice photonic crystal (PC) consisted of infinite dielectric rods and a triangular-lattice photonic crystal slab with air holes are studied by finite-difference time-domain (FDTD) technique and a Pade approximation. The decaying constant beta of the fundamental guided mode is calculated from the mode frequency, the quality factor (Q-factor) and the group velocity v(g) as beta = omega/(2Qv(g)). In the 2D square-lattice photonic crystal waveguide (PCW), the decaying rate ranged from 10(3) to 10(-4) cm(-1) can be reliably obtained from 8 x 10(3)-item FDTD output with the FDTD computing time of 0.386 ps. And at most 1 ps is required for the mode with the Q-factor of 4 x 10(11) and the decaying rate of 10(-7) cm(-1). In the triangular-lattice photonic crystal slab, a 10(4)-item FDTD output is required to obtain a reliable spectrum with the Q-factor of 2.5 x 10(8) and the decaying rate of 0.05 cm(-1). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the response formula of the photonic crystals and the Bloch equations, the lasing threshold in arbitrary 2D photonic crystals was obtained by an investigation of steady-state laser behavior. The lasing threshold is expressed by the population inversion. It shows that the population inversion threshold is proportional to the second order of the group velocity, and to the relaxation coefficient. (c) 2004 Elsevier B.V. All rights reserved.