934 resultados para GRIBOV HORIZON
Resumo:
We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.
Resumo:
In applied work in macroeconomics and finance, nonoptimal infinite horizon economies are often studied in the the state space is unbounded. Important examples of such economies are single vector growth models with production externalities, valued fiat money, monopolistic competition, and/or distortionary government taxation. Although sufficient conditions for existence and uniqueness of Markovian equilibrium are well known for the compact state space case, no similar sufficient conditions exist for unbounded growth. This paper provides such a set of sufficient conditions, and also present a computational algorithm that will prove asymptotically consistent when computing Markovian equilibrium.