920 resultados para GRAVITY THEORIES
Resumo:
Objectives: This study aims to explore subjectives theories (Flick, 1991) concerning sexualityamong gynaecologists. Methods: We conducted 27 deepened semi-structured interviews withmen and women gynaecologists, in the French part of Switzerland. A thematic contentanalysis was applied to the entire corpus. Results: We observe that discourse on sexualityissues can be source of discomfort during consultation with patients. Our analysis highlightsdisparities among levels of knowledge, attitudes and practices in gynaecologists. We observedthat their knowledges on sexuality seem to be constructed mainly on a profane knowledgebased on the common sense and/or their personal experiences. Furthermore, our findingsshow sex differences among physicians, especially on theoretical perspectives underlying theirdiscourse, and the time they allow themselves to spend with a patient. Conclusion: Nowadays,gynaecologists come across sexuality issues that go beyond anatomical and physiologicalconsiderations and for which they are not necessarily qualified. Our research suggests toanalyse both the role and the limits of gynaecologists as well as the motivations guiding theircurrent practice.
Resumo:
CONTEXT: A passive knee-extension test has been shown to be a reliable method of assessing hamstring tightness, but this method does not take into account the potential effect of gravity on the tested leg. OBJECTIVE: To compare an original passive knee-extension test with 2 adapted methods including gravity's effect on the lower leg. DESIGN: Repeated measures. SETTING: Laboratory. PARTICIPANTS: 20 young track and field athletes (16.6 ± 1.6 y, 177.6 ± 9.2 cm, 75.9 ± 24.8 kg). INTERVENTION: Each subject was tested in a randomized order with 3 different methods: In the original one (M1), passive knee angle was measured with a standard force of 68.7 N (7 kg) applied proximal to the lateral malleolus. The second (M2) and third (M3) methods took into account the relative lower-leg weight (measured respectively by handheld dynamometer and anthropometrical table) to individualize the force applied to assess passive knee angle. MAIN OUTCOME MEASURES: Passive knee angles measured with video-analysis software. RESULTS: No difference in mean individualized applied force was found between M2 and M3, so the authors assessed passive knee angle only with M2. The mean knee angle was different between M1 and M2 (68.8 ± 12.4 vs 73.1 ± 10.6, P < .001). Knee angles in M1 and M2 were correlated (r = .93, P < .001). CONCLUSIONS: Differences in knee angle were found between the original passive knee-extension test and a method with gravity correction. M2 is an improved version of the original method (M1) since it minimizes the effect of gravity. Therefore, we recommend using it rather than M1.
Resumo:
Front and domain growth of a binary mixture in the presence of a gravitational field is studied. The interplay of bulk- and surface-diffusion mechanisms is analyzed. An equation for the evolution of interfaces is derived from a time-dependent Ginzburg-Landau equation with a concentration-dependent diffusion coefficient. Scaling arguments on this equation give the exponents of a power-law growth. Numerical integrations of the Ginzburg-Landau equation corroborate the theoretical analysis.
Resumo:
Accurately calibrated effective field theories are used to compute atomic parity nonconserving (APNC) observables. Although accurately calibrated, these effective field theories predict a large spread in the neutron skin of heavy nuclei. Whereas the neutron skin is strongly correlated to numerous physical observables, in this contribution we focus on its impact on new physics through APNC observables. The addition of an isoscalar-isovector coupling constant to the effective Lagrangian generates a wide range of values for the neutron skin of heavy nuclei without compromising the success of the model in reproducing well-constrained nuclear observables. Earlier studies have suggested that the use of isotopic ratios of APNC observables may eliminate their sensitivity to atomic structure. This leaves nuclear structure uncertainties as the main impediment for identifying physics beyond the standard model. We establish that uncertainties in the neutron skin of heavy nuclei are at present too large to measure isotopic ratios to better than the 0.1% accuracy required to test the standard model. However, we argue that such uncertainties will be significantly reduced by the upcoming measurement of the neutron radius in 208^Pb at the Jefferson Laboratory.
Resumo:
We develop an efficient technique to compute anomalies in supersymmetric theories by combining the so-called nonlocal regularization method and superspace techniques. To illustrate the method we apply it to a four-dimensional toy model with potentially anomalous N=1 supersymmetry and prove explicitly that in this model all the candidate supersymmetry anomalies have vanishing coefficients at the one-loop level.
Resumo:
We study spacetime diffeomorphisms in the Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.
Resumo:
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
Resumo:
The gauge-invariant actions for open and closed free bosonic string field theories are obtained from the string field equations in the conformal gauge using the cohomology operations of Banks and Peskin. For the closed-string theory no restrictions are imposed on the gauge parameters.
Resumo:
Diffeomorphism-induced symmetry transformations and time evolution are distinct operations in generally covariant theories formulated in phase space. Time is not frozen. Diffeomorphism invariants are consequently not necessarily constants of the motion. Time-dependent invariants arise through the choice of an intrinsic time, or equivalently through the imposition of time-dependent gauge fixation conditions. One example of such a time-dependent gauge fixing is the Komar-Bergmann use of Weyl curvature scalars in general relativity. An analogous gauge fixing is also imposed for the relativistic free particle and the resulting complete set time-dependent invariants for this exactly solvable model are displayed. In contrast with the free particle case, we show that gauge invariants that are simultaneously constants of motion cannot exist in general relativity. They vary with intrinsic time.
Resumo:
A geometrical treatment of the path integral for gauge theories with first-class constraints linear in the momenta is performed. The equivalence of reduced, Polyakov, Faddeev-Popov, and Faddeev path-integral quantization of gauge theories is established. In the process of carrying this out we find a modified version of the original Faddeev-Popov formula which is derived under much more general conditions than the usual one. Throughout this paper we emphasize the fact that we only make use of the information contained in the action for the system, and of the natural geometrical structures derived from it.
Resumo:
This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schrödinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production.
Resumo:
We discuss the relation between spacetime diffeomorphisms and gauge transformations in theories of the YangMills type coupled with Einsteins general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure YangMills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the spacetime metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer. 2000 American Institute of Physics.
Resumo:
For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity.