516 resultados para GRASSLANDS
Resumo:
The introduction of Eragrostis curvula (African Lovegrass, herafter Lovegrass) for pasture improvement across Australia has not been successful. Instead Lovegrass, a C4 perennial grass originating from Southern African, has proven unpalatable to stock and to have low nutritional value if stocks do eat it. It has spread prolifically along roadsides, stream banks, conservation areas and pastures. Because control efforts have not been effective, our aim was to determine the putative mechanisms responsible for the dominance of Lovegrass, specifically disturbance (selective grazing) and competition.
Resumo:
Grasslands occupy approximately half of the ice-free land area of the world, make up about 70 percent of the world's agricultural area, and are an important agricultural resource, particularly in areas where people are among the most food insecure. Despite their significant potential for carbon (C) sequestration and emission reductions, they are currently not included in international agreements to reduce greenhouse gas (GHG) emissions. The chapters in this book have presented new data on management systems that could sequester C in the soil or biomass, assessed the policy and economic aspects of C sequestration in grassland soils, and evaluated limitations and those techniques required to capitalize on grassland C sequestration as a viable component of mitigation strategy.
Resumo:
Temperate Australia sits between the heat engine of the tropics and the cold Southern Ocean, encompassing a range of rainfall regimes and falling under the influence of different climatic drivers. Despite this heterogeneity, broad-scale trends in climatic and environmental change are evident over the past 30 ka. During the early glacial period (∼30–22 ka) and the Last Glacial Maximum (∼22–18 ka), climate was relatively cool across the entire temperate zone and there was an expansion of grasslands and increased fluvial activity in regionally important Murray–Darling Basin. The temperate region at this time appears to be dominated by expanded sea ice in the Southern Ocean forcing a northerly shift in the position of the oceanic fronts and a concomitant influx of cold water along the southeast (including Tasmania) and southwest Australian coasts. The deglacial period (∼18–12 ka) was characterised by glacial recession and eventual disappearance resulting from an increase in temperature deduced from terrestrial records, while there is some evidence for climatic reversals (e.g. the Antarctic Cold Reversal) in high resolution marine sediment cores through this period. The high spatial density of Holocene terrestrial records reveals an overall expansion of sclerophyll woodland and rainforest taxa across the temperate region after ∼12 ka, presumably in response to increasing temperature, while hydrological records reveal spatially heterogeneous hydro-climatic trends. Patterns after ∼6 ka suggest higher frequency climatic variability that possibly reflects the onset of large scale climate variability caused by the El Niño/Southern Oscillation.
Resumo:
Human alterations to nutrient cycles1, 2 and herbivore communities3, 4, 5, 6, 7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8, 9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Resumo:
Agriculture is responsible for a significant proportion of total anthropogenic greenhouse gas emissions (perhaps 18% globally), and therefore has the potential to contribute to efforts to reduce emissions as a means of minimising the risk of dangerous climate change. The largest contributions to emissions are attributed to ruminant methane production and nitrous oxide from animal waste and fertilised soils. Further, livestock, including ruminants, are an important component of global and Australian food production and there is a growing demand for animal protein sources. At the same time as governments and the community strengthen objectives to reduce greenhouse gas emissions, there are growing concerns about global food security. This paper provides an overview of a number of options for reducing methane and nitrous oxide emissions from ruminant production systems in Australia, while maintaining productivity to contribute to both objectives. Options include strategies for feed modification, animal breeding and herd management, rumen manipulation and animal waste and fertiliser management. Using currently available strategies, some reductions in emissions can be achieved, but practical commercially available techniques for significant reductions in methane emissions, particularly from extensive livestock production systems, will require greater time and resource investment. Decreases in the levels of emissions from these ruminant systems (i.e., the amount of emissions per unit of product such as meat) have already been achieved. However, the technology has not yet been developed for eliminating production of methane from the rumen of cattle and sheep digesting the cellulose and lignin-rich grasses that make up a large part of the diet of animals grazing natural pastures, particularly in arid and semi-arid grazing lands. Nevertheless, the abatement that can be achieved will contribute significantly towards reaching greenhouse gas emissions reduction targets and research will achieve further advances.
Resumo:
Aim Large-scale patterns linking energy availability, biological productivity and diversity form a central focus of ecology. Despite evidence that the activity and abundance of animals may be limited by climatic variables associated with regional biological productivity (e.g. mean annual precipitation and annual actual evapotranspiration), it is unclear whether plant–granivore interactions are themselves influenced by these climatic factors across broad spatial extents. We evaluated whether climatic conditions that are known to alter the abundance and activity of granivorous animals also affect rates of seed removal. Location Eleven sites across temperate North America. Methods We used a common protocol to assess the removal of the same seed species (Avena sativa) over a 2-day period. Model selection via the Akaike information criterion was used to determine a set of candidate binomial generalized linear mixed models that evaluated the relationship between local climatic data and post-dispersal seed predation. Results Annual actual evapotranspiration was the single best predictor of the proportion of seeds removed. Annual actual evapotranspiration and mean annual precipitation were both positively related to mean seed removal and were included in four and three of the top five models, respectively. Annual temperature range was also positively related to seed removal and was an explanatory variable in three of the top four models. Main conclusions Our work provides the first evidence that energy and precipitation, which are known to affect consumer abundance and activity, also translate to strong, predictable patterns of seed predation across a continent. More generally, these findings suggest that future changes in temperature and precipitation could have widespread consequences for plant species composition in grasslands, through impacts on plant recruitment.
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.
Resumo:
Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4,5,6,7,8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.
Resumo:
The mechanisms and control of hardseededness in the 3 Australian cultivars of the genus Desmanthus were investigated in a series of experiments in which the effects of various seedsoftening treatments, particularly boiling water, were measured. Desmanthus seed is predominantly hard, only defective seeds being normally otherwise. As it has only very brief, early embryo dormancy, hardseededness is the only serious barrier to germination. Seed is most readily softened through rupture of the palisade at the lens (strophiole). The lens is of a typically mimosaceous type which is readily ruptured by immersion in boiling water or less readily by application of pressure to adjacent parts of the testa. Ruptures may consist only of separation of the palisade from underlying tissue, which alone does not confer permeability; mostly they also result in fractures to the palisade that then render seeds irreversibly permeable. The palisade becomes reflective as it separates, which allows the event to be witnessed at the moment of separation if suitable pressure is applied to the testa of an individual seed while it is viewed under magnification. Brief (4–10 seconds) immersion of highquality seed in boiling water consistently softened a high proportion of seeds without causing serious damage. Extending the duration of immersion led to a progressive increase in the proportion of seed deaths. Neither previous boiling water treatment nor scarification damage to the testa materially affected results of treatment, but immature and small seeds behaved differently, being more vulnerable to damage than mature seed, and less likely to undergo lens rupture. Adaptation of boiling water treatment to farm-scale seed handling was simple and reliable. Commercial treatment of seed by an alternative method suitable for greater bulks and consisting of passage through a rice-whitener was checked and found to be successful through a combination of gentle scarification and lens rupture, both attributable to the numerous minor impacts of the process. Percentage emergence of seedlings from soil in the greenhouse closely followed percentage laboratory germination, except when inferior seed grades were included in the comparison, when emergence was poor. Very little seed softened in soil. Already-permeable seed either germinated rapidly or died, while buried hard seed mostly remained hard and viable even more than a year after sowing.
Resumo:
Seed production and soil seed hanks of H. contortus were studied in a subset of treatments within an extensive grazing study conducted in H. contortus pasture in southern Queensland between 1990 and 1996. Seed production of H. contortus in autumn ranged from 260 to 1800 seeds/m2 with much of this variation due to differences in rainfall between years. Seed production was generally higher in the silver-leaved ironbark than in the narrow-leaved ironbark land class and was also influenced by a consistent stocking rate x pasture type interaction. Inflorescence density was the main factor contributing to the variable seed production and was related to the rainfall received during February. The number of seeds per inflorescence was unaffected by seasonal rainfall, landscape position, stocking rate or legume oversowing. Seed viability was related to the rainfall received during March. Soil seed banks in spring varied from 130 to 520 seeds/m2 between 1990 and 1995 with generally more seed present in the silver-leaved ironbark than in the narrow-leaved ironbark land class. There were poor relationships between viable seed production and the size of the soil seed bank, and between the size of the soil seed bank and seedling recruitment. This study indicates that H. contortus has the potential to produce relatively large amounts of seed and showed that the seasonal pattern of rainfall plays a major role in achieving this potential
Resumo:
The dynamics of Heteropogon contortus (black speargrass) populations were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This subset included 2 landscape positions and 3 stocking rates in both native pasture and legume-oversown native pasture. Severe drought conditions throughout much of the study necessitated ongoing adjustments to the original stocking rates and, as a result, drought was the major influence on the dynamics of H. contortus populations. Plant density and basal area in the silver-leaved ironbark landscape were consistently higher than those in the narrow-leaved ironbark landscape. There was limited evidence of any impact by either light or moderate stocking rate but there was evidence of an impact at the heaviest stocking rate. There was minimal impact of legume oversowing. Relatively large fluctuations in plant density occurred during this study resulting from the death of existing plants, due mainly to drought, and seedling recruitment. Similarly, there were relatively large fluctuations in basal area caused mainly by changes in plant size. Rates for turnover of plant numbers were relatively high whereas plant turnover rates of basal areas were relatively low. Regular seedling recruitment appeared necessary to ensure the persistence of this species. Despite the high turnover, populations were maintained at reasonable levels indicating the overall resilience of H. contortus.
Resumo:
The Mt Garnet Landcare Group commissioned a survey of landholders within the Upper Herbert and Upper Burdekin River Catchments to assess the density of native woodlands and to gauge the extent of exotic weed infestation. Twenty-four of 49 landholders responded, representing an area of nearly 500 000 ha or 47% of the total area. Dense native woodland covers 24% (>117 000 ha) of the area surveyed, while a further 30% (140 000 ha) supports moderately dense stands. The dense stands are largely confined to the highly fertile alluvial soils (26% dense woodland) and the lower fertility sandy-surfaced soils (33% or >96 000 ha). Moderate and dense infestations of exotic weeds, principally Lantana camara, occur on 54% (20 000 ha) of alluvial soils and on 13% of sandy-surfaced soils (39 000 ha), where praxelis (Praxelis clematidia) is the major weed. Basaltic soils have low levels of both dense woodland and exotic weed infestation. Some implications of the results are discussed.
Resumo:
The dynamics of the unpalatable Aristida spp. (wiregrasses) were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This paper reports the results from these treatments which included 2 land classes (silver-leaved and narrowleaved ironbark), 3 stocking rates (0.3, 0.6 and 0.9 beasts/ha) in both native pasture and legumeoversown native pasture, all in the absence of fire. Changes in plant density and basal area of Aristida spp. reflected differences in both the survival and size of existing plants together with a large seedling recruitment in 1991. Two different taxa of Aristida spp. were distinguished; however, there were no clear differences in the response of these 2 taxa to the treatments. Grazing had the greatest impact on population dynamics through reducing basal area as stocking rate increased. Neither landscape position nor legume oversowing had a major impact on Aristida spp. The results suggest that populations of Aristida spp. will be highest under light grazing and that seedling recruitment may be episodic
Resumo:
This paper reports an experiment undertaken to examine the impact of burning in spring together with reduced grazing pressure on the dynamics of H. contortus and Aristida spp. In H. contortus pasture in south-eastern Queensland. The overall results indicate that spring burning in combination with reduced grazing pressure had no marked effect on the density of either grass species. This was attributed to 2 factors. Firstly, extreme drought conditions restricted any increase in H. contortus seedling establishment despite the presence of an adequate soil seed bank prior to summer; and secondly, some differences occurred in the response to fire of the diverse taxonomic groupings in the species of Aristida spp. present at the study site. This study concluded that it is necessary to identify appropriate taxonomic units within the Aristida genus and that, where appropriate, burning in spring to manage pasture composition should be conducted under favorable rainfall conditions using seasonal forecasting indicators such as the Southern Oscillation Index
Resumo:
Different degrees of severity of threshing were imposed during combine-harvesting of seed of Gatton panic, a cultivar of Panicum maximum , to determine effects of degree of threshing damage on subsequent properties of seed. Threshing cylinder peripheral speeds and concave clearances covering the normal range employed commercially were varied experimentally in the harvest of 2 crops grown in north Queensland. Harvested seed was dried and cleaned, then stored under ambient conditions. The extent of physical damage was measured, and samples were tested at intervals for viability, germination, dormancy and seedling emergence from soil in a glasshouse and in the field over the 2 seasons following harvest. Physical damage increased as peripheral rotor speed rose and (though less markedly) as concave clearance was reduced. As the level of damage increased, viability was progressively reduced, life expectancy was shortened, and dormancy was broken. When the consequences were measured as seedling emergence from soil, the adverse effects on viability tended to cancel out the benefits of dormancy-breaking, leaving few net differences attributable to the degree of threshing severity. We concluded that there would be no value in trying to manipulate the quality of seed produced for normal commercial use through choice of cylinder settings, but that deliberate light or heavy threshing could benefit special-purpose seed, destined, respectively, for long-term storage or immediate use.