805 resultados para GJ 876d
Resumo:
Retroposition is widely found to play essential roles in origination of new mammalian and other animal genes. However, the scarcity of retrogenes in plants has led to the assumption that plant genomes rarely evolve new gene duplicates by retroposition, de
Resumo:
Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns
Resumo:
HIV4 p24 detection provides a means to aid the early diagnosis of HIV-1 infection, track the progression of disease and assess the efficacy of antiretroviral therapy. In the present study, three monoclonal antibodies (mAbs) p3JB9, p5F1 and p6F4 against HI
Resumo:
This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet. © 2011 Elsevier Inc.
Resumo:
An assessment of the underwater blast resistance of sandwich beams with a prismatic Y-truss core is presented, utilizing three-dimensional finite element calculations. Results show a significant performance benefit for sandwich construction when compared to a monolithic plate of the same mass when the sandwich core combines high shear strength with low compressive strength.
Resumo:
The dynamic compressive response of a sandwich plate with a metallic corrugated core is predicted. The back face of the sandwich plate is held fixed whereas the front face is subjected to a uniform velocity, thereby compressing the core. Finite element analysis is performed to investigate the role of material inertia, strain hardening and strain rate hardening upon the dynamic collapse of the corrugated core. Three classes of collapse mode are identified as a function of impact velocity: (i) a three-hinge plastic buckling mode of wavelength equal to the strut length, similar to the quasi-static mode, (ii) a 'buckle-wave' regime involving inertia-mediated plastic buckling of wavelength less than that of the strut length, and (iii) a 'stubbing' regime, with shortening of the struts by local fattening at the front face. The presence of strain hardening reduces the regime of dominance of the stubbing mode. The influence of material strain rate sensitivity is evaluated by introducing strain rate dependent material properties representative of type 304 stainless steel. For this choice of material, strain rate sensitivity has a more minor influence than strain hardening, and consequently the dynamic collapse strength of a corrugated core is almost independent of structural dimension. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report a novel phase separation phenomenon observed in the growth of ternary In(x)Ga(1-x)As nanowires by metalorganic chemical vapor deposition. A spontaneous formation of core-shell nanowires is investigated by cross-sectional transmission electron microscopy, revealing the compositional complexity within the ternary nanowires. It has been found that for In(x)Ga(1-x)As nanowires high precursor flow rates generate ternary In(x)Ga(1-x)As cores with In-rich shells, while low precursor flow rates produce binary GaAs cores with ternary In(x)Ga(1-x)As shells. First-principle calculations combined with thermodynamic considerations suggest that this phenomenon is due to competitive alloying of different group-III elements with Au catalysts, and variations in elemental concentrations of group-III materials in the catalyst under different precursor flow rates. This study shows that precursor flow rates are critical factors for manipulating Au catalysts to produce nanowires of desired composition.