972 resultados para GENUS ANOPHELES
Resumo:
Stomatogenesis and the cell division cycle was investigated for Macropodinium yalanbense Dehority, 1996 from Macropus giganteus using light and electron microscopy. Macropodinium spp. are endosymbiotic ciliates found only in the stomachs of macropodid marsupials. Stomatogenesis proceeds through 4 stages: initial formation of a transverse division suture; formation of the preoral field and formation of vestibular kineties in an internal pouch; extension of vestibulum posteriorly and external formation of new adoral kineties; and extension of somatic and adoral kineties accompanying dorsal and ventral constriction of the cell. Karyokinesis and formation of the new cytoproct occur immediately prior to cytokinesis. Comparison with other litostome ciliates shows that the formation of new vestibular kineties is most similar to that of the entodiniomorphs, formation of adoral kineties is most similar to that of the haptorians and formation of the somatic kineties to that of the vestibuliferans. The phylogenetic affinities of Macropodinium are thus difficult to infer from the ontogeny of organelle systems. Stomatogenesis of the adoral kineties is either epiapokinetal or a new type of cryptotelokinetal whereas the vestibular kineties are formed by either endoapokinetal or cryptotelokinetal processes. No other ciliate has been observed to utilise 2 types of stomatogenesis in its division cycle.
Resumo:
Descriptions of the three sibling species of the Anopheles farauti complex in Australia, A. farauti Laveran (formerly A. farauti No. 1), A. hinesorum Schmidt sp.n. (formerly A. farauti No. 2) and A. torresiensis Schmidt sp.n. (formerly A. farauti No. 3) are provided. These species form a part of the punctulatus group, which contains the major malaria vectors in the southwest Pacific. Morphological markers are described for adult females, fourth instar larvae and pupae which identify most specimens, and are presented in keys.
Resumo:
Short-nosed bandicoots, Isoodon, have undergone marked range contractions since European colonisation of Australia and are currently divided into many subspecies, the validity of which is debated. Discriminant function analysis of morphology and a phylogeny of Isoodon based on mtDNA control region sequences indicate a clear split between two of the three recognised species, I. macrourus and I. obesulus/auratus. However, while all previously recognised taxa within the I. obesulus/auratus group are morphologically distinct, I. auratus and I. obesulus are not phylogenetically distinct for mtDNA. The genetic divergence between I. obesulus and I. auratus (2.6%) is similar to that found among geographic isolates of the former (I. o. obesulus and I. o. peninsulae: 2.7%). Further, the divergence between geographically close populations of two different species (I. o. obesulus from Western Australia and I. a. barrowensis: 1.2%) is smaller than that among subspecies within I. auratus (I. a. barrowensis and I. auratus from northern Western Australia: 1.7%). A newly discovered population of Isoodon in the Lamb Range, far north Queensland, sympatric with a population of I. m. torosus, is shown to represent a range extension of I. o. peninsulae (350 km). It seems plausible that what is currently considered as two species, I. obesulus and I. auratus, was once one continuous species now represented by isolated populations that have diverged morphologically as a consequence of adaptation to the diverse environments that occur throughout their range. The taxonomy of these populations is discussed in relation to their morphological distinctiveness and genetic similarity.
Resumo:
Members of the flightless genus Apterotheca Gebien (Coleoptera : Tenebrionidae) are mostly restricted to the high elevation rainforests of the Wet Tropics World Heritage Area of north-eastern Australia. This region has been recognised as an 'epicentre of evolution for low vagility animals'. The genus Apterotheca is the most diverse low vagility insect taxon known in this region. Forty-four species are included here in a revision of the genus. Three of these species were previously included in Apterotheca (A. antaroides (Pascoe), A. besti (Blackburn) and A. punctipennis Carter), four were previously included in other genera (A. australis (Kulzer), comb. nov. and A. punctifrons (Gebien), comb. nov. in Apterophenus Gebien, A. costata (Buck), comb. nov. in Caxtonana Buck and A. pustulosa (Carter), comb. nov. in Austropeus Carter) and 37 are new. The monotypic genera Austropeus Carter, syn. nov. and Caxtonana Buck, syn. nov. are proposed as new synonyms of Apterotheca. A lectotype for A. punctipennis and A. besti are designated. A key to the species of Apterotheca and a phylogenetic analysis based on the morphological features of adults, as well as a discussion of character evolution, are also included. Data presented here represent the framework for future studies on the determinants of the patterns of diversity found in the Wet Tropics.
Resumo:
The principal malaria vector in the Philippines, Anopheles flavirostris (Ludlow) (Diptera: Culicidae), is regarded as 'shade-loving' for its breeding sites, i.e. larval habitats. This long-standing belief, based on circumstantial observations rather than ecological analysis, has guided larval control methods such as 'stream-clearing' or the removal of riparian vegetation, to reduce the local abundance of An. flavirostris . We measured the distribution and abundance of An. flavirostris larvae in relation to canopy vegetation cover along a stream in Quezon Province, the Philippines. Estimates of canopy openness and light measurements were obtained by an approximation method that used simplified assumptions about the sun, and by hemispherical photographs analysed using the program hemiphot(C) . The location of larvae, shade and other landscape features was incorporated into a geographical information system (GIS) analysis. Early larval instars of An. flavirostris were found to be clustered and more often present in shadier sites, whereas abundance was higher in sunnier sites. For later instars, distribution was more evenly dispersed and only weakly related to shade. The best predictor of late-instar larvae was the density of early instars. Distribution and abundance of larvae were related over time (24 days). This pattern indicates favoured areas for oviposition and adult emergence, and may be predictable. Canopy measurements by the approximation method correlated better with larval abundance than hemispherical photography, being economical and practical for field use. Whereas shade or shade-related factors apparently have effects on larval distribution of An. flavirostris , they do not explain it completely. Until more is known about the bionomics of this vector and the efficacy and environmental effects of stream-clearing, we recommend caution in the use of this larval control method.
Resumo:
The Australian species of Allomethus and Claraeola are revised and include one described species, Claraeola erinys (Perkins), and five new species: Allomethus unicicolis sp. n., Claraeola cyclohirta sp. n., C. sicilis sp. n., C. spargosis sp. n., and C. yingka sp. n.. Claraeola hylaea (Perkins) is proposed to be a synonym of C. erinys (Perkins). A key to species is provided and male and female genitalia are illustrated. The Australian species are placed phylogenetically into a world context using available taxa within the Allomethus genus group. The phylogenetic relationships are discussed in light of a cladistic analysis involving 22 taxa and 60 characters.
Resumo:
Evidence suggesting polyphyly of the traditionally recognised tick genus Aponomma Neumann, 1899 is summarized. Continued recognition of this genus in its current concept leaves a polyphyletic genus Aponomma and a paraphyletic genus Amblyomma Koch, 1844. To improve the correlation between our understanding of phylogenetic relationships in metastriate ticks and their classification, a few changes in classification are proposed. The members of the 'indigenous Australian Aponomma' group (sensu Kaufman, 1972), A. auruginans Schulze, 1936, A. concolor Neumann, 1899, A. glebopalma Keirans, King & Sharrad, 1994, A. hydrosauri (Denny, 1843) and A. undatum (Fabricius, 1775), are transferred to Bothriocroton Keirans, King & Sharrad, 1994, which is raised to full generic rank. The remaining members of Aponomma are transferred to Amblyomma. Uncertainty remains on relationships of Bothriocroton to other metastriate lineages and on the systematic position of the two species formerly included in the 'primitive Aponomma' group, A. elaphense Price, 1959 and A. sphenodonti Dumbleton, 1943.
Resumo:
Sequences of the rRNA nontranscribed spacer (NTS) were determined for six isolates of Perkinsus olseni, seven isolates of Perkinsus sp. from Anadara trapezia and one isolate of Perkinsus sp. from Austrovenus stutchburyi. These sequences were compared with previously published NTS sequences for R atlanticus, P. marinus and P. andrewsi. Consensus sequences for Perkinsus olseni, the Perkinsus isolates and P. atlanticus were approximately 98-99% similar to each other but only 65-79% similar to P. marinus and P. andrewsi sequences. Some individual P. olseni sequences were less similar to each other (97.4%) than they were to P. atlanticus sequences (97.8-98.2%), therefore NTS provides further evidence that P. atlanticus, P. olseni, Perkinsus sp. from Anadara trapezia and Perkinsus sp. from Austrovenus stutchburyi are conspecific. We propose that P. atlanticus be synonymised with P. olseni Lester & Davis, 1981 which has taxonomic priority, and that Perkinsus sp. from Anadara trapezia and Perkinsus sp. from Austrovenus stutchburyi belong to R olseni sensu lato as well. A phylogenetic analysis of SSU rDNA, incorporating recently published Perkinsus sequences, supports the placement of the Perkinsus species with Parvilucifera infectans within the Dinoflagellata.
Resumo:
The proanthocyanidin (PA) status of 116 accessions from the Leucaena genus representing 21 species, 6 subspecies, 3 varieties and 4 interspecific hybrids was evaluated under uniform environmental and experimental conditions at Redland Bay, Queensland, Australia in October 1997. The PA content of lyophilized youngest fully expanded leaves was measured spectrophotometrically by the butanol/HCl assay referenced to L. leucocephala ssp. glabrata standard PA and expressed as L. leucocephala ssp. glabrata PA equivalents (LLPAE). Considerable interspecific variation in PA concentration existed within the genus, ranging from 0-339 g LLPAE/kg dry matter (DM). Taxa including L. confertiflora, L. cuspidata, L. esculenta and L. greggii contained very high (> 180 g LLPAE/kg DM) PA concentrations. Similarly, many agronomically superior accessions from L. diversifolia, L. pallida and L. trichandra contained extremely high (up to 250 g LLPAE/kg DM) PA concentrations, although these taxa exhibited wide intraspecific variation in PA content offering the potential to select accessions with lower (120-160 g LLPAE/kg DM) PA content. Commercial cultivars of L. leucocephala ssp. glabrata, known to produce forage of superior quality, contained low amounts of PA (33-39 g LLPAE/kg DM). Artificial interspecific hybrids had PA contents intermediate to those of both parents, Lesser-known taxa. including L. collinsii, L. lanceolata, L. lempirana, L. macrophylla, L. magnifica, L. multicapitula, L. salvadorensis and L. trichodes, contained undetectable to low (0-36 g LLPAE/kg DM) quantities of PA and have potential as parents to breed interspecific hybrids of low PA status and superior forage quality. Extractable PA was the dominant PA component, accounting for 91% of total PA within the genus. Regression analysis of accession ranks from different experiments compared to these results indicated that genetic regulation of Leucaena spp. PA content was consistent (P < 0.01) under different edapho-climatic environments. The distribution of PA within the Leucaena genus did not concur with the predictions of various evolutionary and phylogenetic plant defence theories.
Resumo:
Mosquito collections were made throughout the mainland of Papua New Guinea to identify the members of the Anopheles punctulatus group present and to determine their distribution. Identification was made using morphology, DNA hybridization, and polymerase chain reaction (PCR)-RFLP analysis. Nine members of the group were identified: An. farauti s.s. Laveran, An.farauti 2, An. koliensis Owen, and An. punctulatus Donitz, were common and widespread; An. farauti 4 was restricted to the north of the central ranges where it was common; An. farauti 6 was found only in the highlands above 1,000 m; and An. farauti 3, An. sp. near punctulatus and An. clowi Rozeboom & Knight were uncommon and had restricted distributions. Identification of An. koliensis and An. punctulatus using proboscis morphology was found to be unreliable wherever An. farauti 4 occurred. The distribution and dispersal of the members of the An. punctulatus group is discussed in regard to climate, larval habitats, distance from the coast, elevation, and proximity to human habitation.
Resumo:
The members of the Anopheles punctulatus group are major vectors of malaria and Bancroftian filariasis in the southwest Pacific region. The group is comprised of 12 cryptic species that require DNA-based tools for species identification. From 1984 to 1998 surveys were carried out in northern Australia, Papua New Guinea and on islands in the southwest Pacific to determine the distribution of the A. punctulatus group. The results of these surveys have now been completed and have generated distribution data from more than 1500 localities through this region. Within this region several climatic and geographical barriers were identified that restricted species distribution and gene flow between geographic populations. This information was further assessed in light of a molecular phylogeny derived from the ssrDNA (18S). Subsequently, hypotheses have been generated on the evolution and distribution of the group so that future field and laboratory studies may be approached more systematically. This study suggested that the ability for widespread dispersal was found to have appeared independently in species that show niche-specific habitat preference (Anopheles farauti s.s. and A. punctulatus) and conversely in species that showed diversity in their larval habitat (Anopheles farauti 2). Adaptation to the monsoonal climate of northern Australia and southwest Papua New Guinea was found to have appeared independently in A. farauti s.s., A. farauti 2 and Anopheles farauti 3. Shared or synapomorphic characters were identified as saltwater tolerance (A. farauti s.s. and Anopheles farauti 7) and elevational affinities above 1500 m (Anopheles farauti 5, Anopheles farauti 6 and A. farauti 2). (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Echinococcus remains a significant public health problem worldwide and, in several regions, the aetiological agents of cystic hydatid disease/echinococcosis are extending their range. The taxonomy of Echinococcus has been a controversial issue for decades, but the outcome of recent molecular epidemiological studies has served to reinforce proposals made ten years ago to revise the taxonomy of Echinococcus. A formal nomenclature is essential for effective communication, and provides the stability that underpins epidemiological investigations. It will also serve to recognize the contribution of early taxonomists.
Resumo:
Microsatellites were isolated and characterized from Anopheles flavirostris, the principal malaria vector in the Philippines. Fifty of the 150 positive clones sequenced contained mostly dinucleotide microsatellites and only 16 had trinucleotide repeats. We designed primers from the unique sequences flanking 18 microsatellite loci. Of these, 11 loci produced successful amplification and revealed high levels of polymorphism; 86 alleles were detected with allele number ranging from 2 to 16 at each locus. The high allelic variability will make these microsatellite loci very useful for taxonomic and population genetic studies.
Resumo:
The following species are described from Platax spp.: Neomultitestis aspidogastriformis n. sp., from P. teira, off Heron Island, Queensland, which can be distinguished from its congeners by the transversely elongate ventral sucker divided into three loculi and probably by testis number; Multitestis magnacetabulum Mamaev, 1970, from P. teira, off Heron Island, Queensland; Diploproctodaeum rutellum ( Mamaev, 1970), from P. teira, off Heron Island, Queensland; Diploproctodaeum tsubameuo n. sp., from P. batavianus, from the Swain Reefs, off Queensland, which differs from its congeners in its overlapping, posteriorly attenuated testes and 38-55 ovarian lobes; and Diplocreadium sp., from P. batavianus, from the Swain Reefs, off Queensland.