892 resultados para GENE-EXPRESSION SIGNATURES
Resumo:
The placenta must allow the passage of iodide from the maternal to the fetal circulation for synthesis of thyroxine by the fetal thyroid. The thyroid sodium iodide symporter (NIS) was cloned in 1996 and, although widely distributed among epithelial tissues, early studies failed to detect it in placenta. We demonstrated NIS mRNA in human placenta and in the human choriocarcinoma cell line, JAr. NIS protein was localized to trophoblasts, with a tendency to apical distribution, in sections of human placenta immunostained with a monoclonal antibody against hNIS. We conclude that NIS is expressed in placenta and may mediate placental iodide transport. (C) 2001 Harcourt Publishers Ltd.
Resumo:
This study focuses on characterizing the genetic and biological alterations associated with squamous cell carcinoma development. Normal human epidermal keratinocytes (HEKs), cells isolated from a preneoplastic lesion (IEC-1), and two neoplastic cell lines, SCC-25 and COLD-16, were grown as raft cultures, and their gene expression profiles were screened using cDNA arrays. Our data indicated that the expression levels of at least 37 genes were significantly (P less than or equal to 0.05; 1.9% of genes screened) altered in neoplastic cells compared with normal cells. Of these genes, 10 genes were up-regulated and 27 genes were down-regulated in the neoplastic cells. In addition, 51% of the genes altered in the neoplastic cells were already altered in the preneoplastic IEC-1 cells. Immunohistochemical staining of patient tumors was used to verify the cDNA array analysis. Our analysis indicated that alterations in genes associated with extracellular matrix production and apoptosis are disrupted in preneoplastic cells, whereas later stages of neoplasia are associated with alterations in gene expression for genes involved in DNA repair or epidermal growth factor (EGF) receptor/mitogen-activated protein kinase kinase (MAPKK)/MAPK/activator protein-1 (AP-1) signaling. Subsequent functional analysis of the alterations in expression of the EGF receptor/MAPKK/MAPK/AP-1 genes suggested they did not contribute to the neoplastic phenotype.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with a variety of growth factors and cytokines. Regulation of syndecan-1 and -2 gene expression was investigated in human periodontal ligament fibroblasts (PDLF), osteoblasts (OB) and gingival fibroblasts (GF), in response to platelet-derived growth factor (PDGF-BB), transforming growth factor (TGF-beta(1)), and interleukin (IL-1beta) by Northern blot analyses. We also compared the effect of PDGF-BB and TGF-beta(1), separately and in combination, in the prolonged presence of IL-1beta on the expression of both syndecan genes. The results demonstrated that the three cell lines regulated the expression of syndecan-1 and -2 in response to growth factors and cytokines in different manners. These cell lines increased syndecan-1 mRNA levels in response to either PDGF-BB or TGF-beta(1) and decreased levels in response to IL-1beta. The effect of IL-1beta on syndecan-1 mRNA synthesis was partially reversed after adding PDGF-BB and TGF-beta(1), separately or in combination, in the presence of IL-1beta. In contrast, syndecan-2 mRNA level was markedly upregulated in response to either TGF-beta(1) or IL-1beta in OB when compared with the other two cell lines. However, the stimulatory effect of TGF-beta(1) on syndecan-2 mRNA production in OB was abolished in the prolonged presence of IL-1beta. These findings lend support to the notion that syndecan-1 and syndecan-2 have distinct functions which correlate with their source and functions within the periodontium.
Resumo:
Alcoholism is a major health problem in Western countries, yet relatively little is known about the mechanisms by which chronic alcohol abuse causes the pathologic changes associated with the disease. It is likely that chronic alcoholism affects a number of signaling cascades and transcription factors, which in turn result in distinct gene expression patterns. These patterns are difficult to detect by traditional experiments measuring a few mRNAs at a time, but are well suited to microarray analyses. We used cDNA microarrays to analyze expression of approximately 10 000 genes in the frontal and motor cortices of three groups of chronic alcoholic and matched control cases. A functional hierarchy was devised for classification of brain genes and the resulting groups were compared based on differential expression. Comparison of gene expression patterns in these brain regions revealed a selective reprogramming of gene expression in distinct functional groups. The most pronounced differences were found in myelin-related genes and genes involved in protein trafficking. Significant changes in the expression of known alcohol-responsive genes, and genes involved in calcium, cAMP, and thyroid signaling pathways were also identified. These results suggest that multiple pathways may be important for neuropathology and altered neuronal function observed in alcoholism.
Resumo:
The bacterial lacZ gene is commonly used as a reporter for the in vivo analysis of gene regulation in transgenic mice. However, several laboratories have reported poor detection of beta-galactosidase (the lacZ gene product) using histochemical techniques, particularly in skin. Here we report the difficulties we encountered in assessing lacZ expression in transgenic keratinocytes using classic X-gal histochemical protocols in tissues shown to express the transgene by mRNA in situ hybridization. We found that lacZ reporter gene expression could be reliably detected in frozen tissue sections by immunofluorescence analysis using a beta-galactosidase-specific antibody. Moreover, we were able to localize both transgene and endogenous gene products simultaneously using double-label immunofluorescence. Our results suggest that antibody detection of beta-galactosidase should be used to verify other assays of lacZ expression, particularly where low expression levels are suspected or patchy expression is observed.
Resumo:
This article represents the proceedings of a symposium at the 2002 joint RSA/ISBRA Conference in San Francisco, California. The organizer was Paula L. Hoffman and the co-chairs were Paula L. Hoffman and Michael Miles. The presentations were (1) Introduction and overview of the use of DNA microarrays, by Michael Miles; (2) DNA microarray analysis of gene expression in brains of P and NP rats, by Howard J. Edenberg; (3) Gene expression patterns in brain regions of AA and ANA rats, by Wolfgang Sommer; (4) Patterns of gene expression in brains of selected lines of mice that differ in ethanol tolerance, by Boris Tabakoff; (5) Gene expression profiling related to initial sensitivity and tolerance in gamma-protein kinase C mutants, by Jeanne Wehner; and (6) Gene expression patterns in human alcoholic brain: from microarrays to protein profiles, by Joanne Lewohl.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
Ageing results in a progressive, intrinsic and generalised imbalance of the control of regulatory systems. A key manifestation of this complex biological process includes the attenuation of the universal stress response. Here we provide the first global assessment of the ageing process as it affects the heat shock response, utilising human peripheral lymphocytes and cDNA microarray analysis. The genomic approach employed in our preliminary study was supplemented with a proteomic approach. In addition, the current study correlates the in vivo total antioxidant status with the age-related differential gene expression as well as the translational kinetics of heat shock proteins (hsps). Most of the genes encoding stress response proteins on the 4224 element microarray used in this study were significantly elevated after heat shock treatment of lymphocytes obtained from both young and old individuals albeit to a greater extent in the young. Cell signaling and signal transduction genes as well as some oxidoreductases showed varied response. Results from translational kinetics of induction of major hsps, from 0 to 24 It recovery period were broadly consistent with the differential expression of HSC 70 and HSP 40 genes. Total antioxidant levels in plasma from old individuals were found to be significantly lower by comparison with young, in agreement with the widely acknowledged role of oxidant homeostasis in the ageing process. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Cytokines are important for breast cell function, both as trophic hormones and as mediators of host defense mechanisms against breast cancer. Recently, inducible feedback suppressors of cytokine signalling (SOCS/JAB/SSI) have been identified, which decrease cell sensitivity to cytokines. We examined the expression of SOCS genes in 17 breast carcinomas and 10 breast cancer lines, in comparison with normal tissue and breast lines. We report elevated expression of SOCS-1-3 and CIS immunoreactive proteins within in situ ductal carcinomas and infiltrating ductal carcinomas relative to normal breast tissue. Significantly increased expression of SOCS-1-3 and CIS transcripts was also shown by quantitative in situ hybridisation within both tumour tissue and reactive stroma. CIS transcript expression was elevated in all 10 cancer lines, but not in control lines. However, there was no consistent elevation of other SOCS transcripts. CIS protein was shown by immunoblot to be present in all cancer lines at increased levels, mainly as the 47 kDa ubiquitinylated form. A potential proliferative role for CIS overexpression is supported by reports that CIS activates ERK kinases, and by strong induction in transient reporter assays with an ERK-responsive promoter. The in vivo elevation of SOCS gene expression may be part of the host/tumour response or a response to autocrine/paracrine GH and prolactin. However, increased CIS expression in breast cancer lines appears to be a specific lesion, and could simultaneously shut down STAT 5 signalling by trophic hormones, confer resistance to host cytokines and increase proliferation through ERK kinases.
Resumo:
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.
Resumo:
The evolution of hybrid polyploid vertebrates, their viability and their perpetuation over evolutionary time have always been questions of great interest. However, little is known about the impact of hybridization and polyploidization on the regulatory networks that guarantee the appropriate quantitative and qualitative gene expression programme. The Squalius alburnoides complex of hybrid fish is an attractive system to address these questions, as it includes a wide variety of diploid and polyploid forms, and intricate systems of genetic exchange. Through the study of genome-specific allele expression of seven housekeeping and tissue-specific genes, we found that a gene copy silencing mechanism of dosage compensation exists throughout the distribution range of the complex. Here we show that the allele-specific patterns of silencing vary within the complex, according to the geographical origin and the type of genome involved in the hybridization process. In southern populations, triploids of S. alburnoides show an overall tendency for silencing the allele from the minority genome, while northern population polyploids exhibit preferential biallelic gene expression patterns, irrespective of genomic composition. The present findings further suggest that gene copy silencing and variable expression of specific allele combinations may be important processes in vertebrate polyploid evolution.
Resumo:
The histone deacetylase inhibitors sodium butyrate (NaBu) and trichostatin A (TSA) exhibit anti-proliferative activity by causing cell cycle arrest and apoptosis. The mechanisms by which NaBu and TSA cause apoptosis and cell cycle arrest are not yet completely clarified, although these agents are known to modulate the expression of several genes including cell-cycle- and apoptosis-related genes. The enzymes involved in the process of translation have important roles in controlling cell growth and apoptosis, and several of these translation factors have been described as having a causal role in the development of cancer. The expression patterns of the translation mechanism, namely of the elongation factors eEF1A1 and eEF1A2, and of the termination factors eRF1 and eRF3, were studied in the breast cancer cell line MCF-7 by real-time quantitative reverse transcription-polymerase chain reaction after a 24-h treatment with NaBu and TSA. NaBu induced inhibition of translation factors' transcription, whereas TSA caused an increase in mRNA levels. Thus, these two agents may modulate the expression of translation factors through different pathways. We propose that the inhibition caused by NaBu may, in part, be responsible for the cell cycle arrest and apoptosis induced by this agent in MCF-7 cells.
Resumo:
A 5-unit polyubiquitin gene, TTU3, was isolated from a T. thermophila genomic library and sequenced. This gene presents an extra triplet coding for Phe, a AGAGA motif and a putative HSE element in its 5'-non-coding region. The ubiquitin gene expression in this ciliate was investigated by Northern blot hybridization in conjugating cells or cells under stress conditions. Exponentially growing cells express two ubiquitin mRNAs of 0.75 and 1.8 kb and a new species of 1.4 kb is induced under hyperthermic stress. During sexual reproduction of the cells (conjugation) the 1.8-kb mRNA is still transcribed whereas the steady-state population of the 0.75 mRNA transcripts is strongly diminished. Southern blot analysis suggests that ubiquitin in T. thermophila constitutes a large family of about ten members.
Resumo:
Thesis presented to obtain the Ph.D. degree in Biology (Molecular Genetics), by the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.