837 resultados para GA (Genetic Algorithm)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used Plane Wave Expansion Method and a Rapid Genetic Algorithm to design two-dimensional photonic crystals with a large absolute band gap. A filling fraction controlling operator and Fourier transform data storage mechanism had been integrated into the genetic operators to get desired photonic crystals effectively and efficiently. Starting from randomly generated photonic crystals, the proposed RGA evolved toward the best objectives and yielded a square lattice photonic crystal with the band gap (defined as the gap to mid-gap ratio) as large as 13.25%. Furthermore, the evolutionary objective was modified and resulted in a satisfactory PC for better application to slab system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optimization method based on uniform design in conjunction with genetic algorithm is described. According to the proposed method, the uniform design technique was applied to the design of starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as simplex. And genetic algorithm was used in optimization procedure, which can improve the rapidity of optimal procedure. The hierarchical chromatographic response function was modified to evaluate the separation equality of a chromatogram. An iterative procedure was adopted to search for the optimal condition to improve the accuracy of predicted retention and the quality of the chromatogram. The optimization procedure was tested in optimization of the chromatographic separation of 11 alkaloids in reversed-phase ion pair chromatography and satisfactory optimal result was obtained. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese Acad Sci, ISCAS Lab Internet Software Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a genetic algorithm for finding a constrained minimum spanning tree. The problem is of relevance in the design of minimum cost communication networks, where there is a need to connect all the terminals at a user site to a terminal concentrator in a multipoint (tree) configuration, while ensuring that link capacity constraints are not violated. The approach used maintains a distinction between genotype and phenotype, which produces superior results to those found using a direct representation in a previous study.