970 resultados para Fuzzy Association Rule Mining


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A decision support system (DSS) was implemented based on a fuzzy logic inference system (FIS) to provide assistance in dose alteration of Duodopa infusion in patients with advanced Parkinson’s disease, using data from motor state assessments and dosage. Three-tier architecture with an object oriented approach was used. The DSS has a web enabled graphical user interface that presents alerts indicating non optimal dosage and states, new recommendations, namely typical advice with typical dose and statistical measurements. One data set was used for design and tuning of the FIS and another data set was used for evaluating performance compared with actual given dose. Overall goodness-of-fit for the new patients (design data) was 0.65 and for the ongoing patients (evaluation data) 0.98. User evaluation is now ongoing. The system could work as an assistant to clinical staff for Duodopa treatment in advanced Parkinson’s disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The utilization of a fuzzy aspect within data analysis attempts to move from a quantitative to a more qualitative investigative environment. As such, this may allow the more non-quantitative researchers results they can use, based on sets of linguistic terms. In this paper an inductive fuzzy decision tree approach is utilized to construct a fuzzy-rule-based system for the first time in a biological setting. The specific biological problem considered attempts to identify the antecedents (conditions in the fuzzy decision rules) which characterize the length of song flight of the male sedge warbler when attempting to attract a mate. Hence, for a non-quantitative investigator the resultant set of fuzzy rules allows an insight into the linguistic interpretation on the relationship between associated characteristics and the respective song flight duration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter discusses and illustrates some potential applications of discrete-event simulation (DES) techniques in structural reliability and availability analysis, emphasizing the convenience of using probabilistic approaches in modern building and civil engineering practices. After reviewing existing literature on the topic, some advantages of probabilistic techniques over analytical ones are highlighted. Then, we introduce a general framework for performing structural reliability and availability analysis through DES. Our methodology proposes the use of statistical distributions and techniques – such as survival analysis – to model component-level reliability. Then, using failure- and repair-time distributions and information about the structural logical topology (which allows determination of the structural state from their components’ state), structural reliability, and availability information can be inferred. Two numerical examples illustrate some potential applications of the proposed methodology to achieving more reliable and structural designs. Finally, an alternative approach to model uncertainty at component level is also introduced as ongoing work. This new approach is based on the use of fuzzy rule-based systems and it allows the introduction of experts’ opinions and evaluations in our methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional Failure Mode and Effect Analysis (FMEA) utilizes the Risk Priority Number (RPN) ranking system to evaluate the risk level of failures, to rank failures, and to prioritize actions. Although this method is simple, it suffers from several shortcomings. In this paper, use of fuzzy inference techniques for RPN determination in an attempt to overcome the weaknesses associated with the traditional RPN ranking system is investigated. However, the fuzzy RPN model, suffers from the combinatorial rule explosion problem. As a result, a generic rule reduction approach, i.e. the Guided Rule Reduction System (GRRS), is proposed to reduce the number of rules that need to be provided by users during the fuzzy RPN modeling process. The proposed approach is evaluated using real-world case studies pertaining to semiconductor manufacturing. The results are analyzed, and implications of the proposed approach are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a two-stage pattern classification and rule extraction system is proposed. The first stage consists of a modified fuzzy min-max (FMM) neural-network-based pattern classifier, while the second stage consists of a genetic-algorithm (GA)-based rule extractor. Fuzzy if-then rules are extracted from the modified FMM classifier, and a ??don't care?? approach is adopted by the GA rule extractor to minimize the number of features in the extracted rules. Five benchmark problems and a real medical diagnosis task are used to empirically evaluate the effectiveness of the proposed FMM-GA system. The results are analyzed and compared with other published results. In addition, the bootstrap hypothesis analysis is conducted to quantify the results of the medical diagnosis task statistically. The outcomes reveal the efficacy of FMM-GA in extracting a set of compact and yet easily comprehensible rules while maintaining a high classification performance for tackling pattern classification tasks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Constructing a monotonicity relating function is important, as many engineering problems revolve around a monotonicity relationship between input(s) and output(s). In this paper, we investigate the use of fuzzy rule interpolation techniques for monotonicity relating fuzzy inference system (FIS). A mathematical derivation on the conditions of an FIS to be monotone is provided. From the derivation, two conditions are necessary. The derivation suggests that the mapped consequence fuzzy set of an FIS to be of a monotonicity order. We further evaluate the use of fuzzy rule interpolation techniques in predicting a consequent associated with an observation according to the monotonicity order. There are several findings in this article. We point out the importance of an ordering criterion in rule selection for a multi-input FIS before the interpolation process; and hence, the practice of choosing the nearest rules may not be true in this case. To fulfill the monotonicity order, we argue with an example that conventional fuzzy rule interpolation techniques that predict each consequence separately is not suitable in this case. We further suggest another class of interpolation techniques that predicts the consequence of a set of observations simultaneously, instead of separately. This can be accomplished with the use of a search algorithm, such as the brute force, genetic algorithm or etc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An assessment model is usually a mathematical model that produces a measuring index, in the form of a numerical score to a situation/object, with respect to the subject of measure. To allow a valid and useful comparison among various situations/objects according to their associated numerical scores to be made, two important properties, i.e., the monotone output property and output resolution properties, are essential in fuzzy inference-based assessment problems. In this paper, the conditions for a fuzzy assessment model to fulfill the monotone output property is investigated using a derivative approach. A guideline on how the input membership functions should be tuned is also provided. Besides, the output resolution property is defined as the derivative of the output of the assessment model with respect to the input, whereby the derivative should be greater than a minimum resolution. Based on the derivative, improvements to the output resolution property by refining the fuzzy production rules are suggested. A case study on the Bowles fuzzy RPN model to demonstrate the effectiveness of the properties is also included.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we purpose a rule pruning strategy to reduce the number of rules in a fuzzy rule-based classification system.A confidence factor, which is formulated based on the compatibility of the rules with the input patterns is under deployed for rule pruning.The pruning strategy aims at reducing the complexity of the fuzzy classification system and, at the same time, maintaining the accuracy rate at a good level.To evaluate the effectiveness of the pruning strategy, two benchmark data sets are first tested. Then, a fault classification problem with real senor measurements collected from a power generation plant is evaluated.The results obtained are analyzed and explained, and implications of the proposed rule pruning strategy to the fuzzy classification system are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A complete and monotonically-ordered fuzzy rule base is necessary to maintain the monotonicity property of a Fuzzy Inference System (FIS). In this paper, a new monotone fuzzy rule relabeling technique to relabel a non-monotone fuzzy rule base provided by domain experts is proposed. Even though the Genetic Algorithm (GA)-based monotone fuzzy rule relabeling technique has been investigated in our previous work [7], the optimality of the approach could not be guaranteed. The new fuzzy rule relabeling technique adopts a simple brute force search, and it can produce an optimal result. We also formulate a new two-stage framework that encompasses a GA-based rule selection scheme, the optimization based-Similarity Reasoning (SR) scheme, and the proposed monotone fuzzy rule relabeling technique for preserving the monotonicity property of the FIS model. Applicability of the two-stage framework to a real world problem, i.e., failure mode and effect analysis, is further demonstrated. The results clearly demonstrate the usefulness of the proposed framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A useful patient admission prediction model that helps the emergency department of a hospital admit patients efficiently is of great importance. It not only improves the care quality provided by the emergency department but also reduces waiting time of patients. This paper proposes an automatic prediction method for patient admission based on a fuzzy min–max neural network (FMM) with rules extraction. The FMM neural network forms a set of hyperboxes by learning through data samples, and the learned knowledge is used for prediction. In addition to providing predictions, decision rules are extracted from the FMM hyperboxes to provide an explanation for each prediction. In order to simplify the structure of FMM and the decision rules, an optimization method that simultaneously maximizes prediction accuracy and minimizes the number of FMM hyperboxes is proposed. Specifically, a genetic algorithm is formulated to find the optimal configuration of the decision rules. The experimental results using a large data set consisting of 450740 real patient records reveal that the proposed method achieves comparable or even better prediction accuracy than state-of-the-art classifiers with the additional ability to extract a set of explanatory rules to justify its predictions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The principle of ratios has been applied to many real world problems, e.g. the part-to-part and part-to-whole ratio formulations. As it is difficult for humans to provide an exact ratio in many real situations, we introduce a fuzzy ratio in this paper. We use some notions from fuzzy arithmetic to analyze fuzzy ratios captured from humans. An application of the formulated fuzzy ratio to a Single Input Rule Modules connected Fuzzy Inference System (SIRMs-FIS) is demonstrated. Instead of using a precise weight, fuzzy sets are employed to represent the relative importance of each rule module. The resulting fuzzy weights are explained as a fuzzy ratio on a weight domain. In addition, a new SIRMs-FIS model with fuzzy weights and part-to-whole fuzzy ratio is devised. A simulated example is presented to clarify the proposed SIRM-FIS model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A search in the literature reveals that mathematical conditions (usually sufficient conditions) for the Fuzzy Inference System (FIS) models to satisfy the monotonicity property have been developed. A monotonically-ordered fuzzy rule base is important to maintain the monotonicity property of an FIS. However, it may difficult to obtain a monotonically-ordered fuzzy rule base in practice. We have previously introduced the idea of fuzzy rule relabeling to tackle this problem. In this paper, we further propose a monotonicity index for the FIS system, which serves as a metric to indicate the degree of a fuzzy rule base fulfilling the monotonicity property. The index is useful to provide an indication whether a fuzzy rule base should (or should not) be used in practice, even with fuzzy rule relabeling. To illustrate the idea, the zero-order Sugeno FIS model is exemplified. We add noise as errors into the fuzzy rule base to formulate a set of non-monotone fuzzy rules. As such, the metric also acts as a measure of noise in the fuzzy rule base. The results show that the proposed metric is useful to indicate the degree of a fuzzy rule base fulfilling the monotonicity property.