936 resultados para Fusion de boson vectoriels
Resumo:
Background: Arthrodesis of the knee by intramedullary fixation hasbeen reported to have a higher rate of success than external fixationor compression plating. Antegrade nailing however can lead to complicationsdue to the different diameters of the medullary canals, fracturesduring insertion, poor rotational stability, breakage of the IM-nailand insufficient compression at the fusion site.Method: This retrospective study reports all knee fusions performedby the same orthopaedic surgeon with the Wichita (Stryker) fusion nail(WFN) from 2004 to 2010. The Wichita nail is a short nail with a deviceat the knee which allows for coupling of differently sized and interlockedfemoral and tibial components and at the same time for compression.Results: We report of 18 patients with a mean follow up of 28 months(range 3-71 months). Infected TKA was the most common indicationfor arthrodesis in 9 cases. The remaining reasons included asepticfailed TKA in 3 cases, 2 patients after fracture, 1 patient with neurologicalinstability after knee dislocation, 1 patient after tumoral resectionand 1 non union after failed arthrodesis with long antegrade nail.Finally 1 patient with bilateral congenital knee dislocation operated onboth sides. As expected, patients receiving the WFN had undergonea large number of previous knee surgeries with a mean of 3.8 (range0-8) procedures per patient. The complication rate was 27% (5 of 18).Two patients had persistent pain requiring revision surgery to increasestability with plating. One case of periprosthetic fracture needed openreduction and internal fixation. 2 patients with superficial hematomawere treated one with open drainage and the other with physiotherapy.Infection was erradicated in all septic cases, we found no new infectionand the fusion rate was 100%.Conclusion: The results in these often difficult cases are satisfyingand we think that this technique is a valid alternative to the otherknown techniques of knee fusion in patients with a poor bone stockand fragile soft tissues.
Resumo:
We estimate the attainable limits on the coupling of a nonstandard Higgs boson to two photons taking into account the data collected by the Fermilab collaborations on diphoton events. We based our analysis on a general set of dimension-6 effective operators that give rise to anomalous couplings in the bosonic sector of the standard model. If the coefficients of all blind operators have the same magnitude, indirect bounds on the anomalous triple vector-boson couplings can also be inferred, provided there is no large cancellation in the Higgs-gamma-gamma coupling.
Resumo:
The possibilities of pairing in two-dimensional boson-fermion mixtures are carefully analyzed. It is shown that the boson-induced attraction between two identical fermions dominates the p wave pairing at low density. For a given fermion density, the pairing gap becomes maximal at a certain optimal boson concentration. The conditions for observing pairing in current experiments are discussed.
Resumo:
We estimate the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology, in the framework of a SUL(2)UY(1) gauge-invariant effective Lagrangian. Our results, based on the data sample already collected by the collaborations at Fermilab Tevatron, show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all blind operators are of the same magnitude, we are also able to impose more restrictive bounds on the anomalous vector-boson triple couplings than the present limit from double gauge boson production at the Tevatron collider.
Resumo:
We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.
Resumo:
The hypernetted-chain formalism for boson-boson mixtures described by an extended Jastrow correlated wave function is derived, taking into account elementary diagrams and triplet correlations. The energy of an ideal boson 3He-4He mixture is computed for low values of the 3He concentration. The zero-3He-concentration limit provides a 3He chemical potential in good agreement with the experimental value, when a McMillan two-body correlation factor and the Lennard-Jones potential are adopted. If the Euler equations for the two-body correlation factors are solved in presence of triplet correlations, the agreement is again improved. At the experimental 4He equilibrium density, the 3He chemical potential turns out to be -2.58 K, to be compared with the experimental value, -2.79 K.
Resumo:
The question concerning whether all membranes fuse according to the same mechanism has yet to be answered satisfactorily. During fusion of model membranes or viruses, membranes dock, the outer membrane leaflets mix (termed hemifusion), and finally the fusion pore opens and the contents mix. Viral fusion proteins consist of a membrane-disturbing 'fusion peptide' and a helical bundle that pin the membranes together. Although SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes form helical bundles with similar topology, it is unknown whether SNARE-dependent fusion events on intracellular membranes proceed through a hemifusion state. Here we identify the first hemifusion state for SNARE-dependent fusion of native membranes, and place it into a sequence of molecular events: formation of helical bundles by SNAREs precedes hemifusion; further progression to pore opening requires additional peptides. Thus, SNARE-dependent fusion may proceed along the same pathway as viral fusion: both use a docking mechanism via helical bundles and additional peptides to destabilize the membrane and efficiently induce lipid mixing. Our results suggest that a common lipidic intermediate may underlie all fusion reactions of lipid bilayers.
Resumo:
The aim of this study was to compare our experience with minimally invasive transforaminal lumbar interbody fusion (MITLIF) and open midline transforaminal lumbar interbody fusion (TLIF). A total of 36 patients suffering from isthmic spondylolisthesis or degenerative disc disease were operated with either a MITLIF (n = 18) or an open TLIF technique (n = 18) with an average follow-up of 22 and 24 months, respectively. Clinical outcome was assessed using the visual analogue scale (VAS) and the Oswestry disability index (ODI). There was no difference in length of surgery between the two groups. The MITLIF group resulted in a significant reduction of blood loss and had a shorter length of hospital stay. No difference was observed in postoperative pain, initial analgesia consumption, VAS or ODI between the groups. Three pseudarthroses were observed in the MITLIF group although this was not statistically significant. A steeper learning effect was observed for the MITLIF group.
Resumo:
We present an update of neutral Higgs boson decays into bottom quark pairs in the minimal supersymmetric extension of the standard model. In particular the resummation of potentially large higher-order corrections due to the soft supersymmetry (SUSY) breaking parameters Ab and is extended. The remaining theoretical uncertainties due to unknown higher-order SUSY-QCD corrections are analyzed quantitatively.