132 resultados para Furnaces.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Published first as a serial in Electrochemical and metallurgical industry, from March, 1905, to July, 1908."--Pref.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previously developed one-dimensional mathematical model, to explain raceway hysteresis, is used to predict the raceway diameter in operating blast furnaces and hot models. Raceway size obtained from the open literature under various conditions for various blast furnaces are compared with computed predictions. In addition the predictions are also compared with published outcomes from other hot models. Simulated results on raceway diameter are in very good agreement with published operating blast furnace and hot model data. The effect of various parameters such as tuyere and hearth diameter, coke size and density, void fraction and bed height on raceway diameter has been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides a review of the chemical reactions occurring in the submerged arc processing of chromite ores. The excavations of industrial furnaces have shown that the charge, as it descends through the furnace, passes through a number of distinct reaction zones. Each zone is characterised by differing process conditions and reaction products. The phase equilibria, reaction steps and mechanisms occurring as the charge progresses through the furnace are examined, and the potential influences of these factors on the process outcomes are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG  k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of reliable, high powered plasma generators has resulted in many plasma processes being proposed as alternatives to existing pyrometallurgical technologies. This work evaluates the advantages and disadvantages of plasma systems by reviewing plasma generators, their integration with reactors and the process economics. Many plasma systems were shown to be technically and economically superior to existing technologies, but some of the plasma system advantages quoted in the literature were found to be impractical because of other system constraints. Process applications were limited by the power inputs available from plasma generators compared to AC electric furnaces. A series of trials were conducted where chromite and steelplant baghouse dusts were smelted in the Tetronics' 2.0 MW transferred arc/open bath reactor to confirm the operating characteristics of the plasma system and its economics. Chromite smelting was technical superior to submerged arc furnace technology, but the economics were unfavourable because of the limited power available from the water-cooled plasma torch and the high electrical energy consumption. A DC graphite electrode plasma furnace using preheated and prereduced chromite concentrates will compete economically with the submerged arc furnace. Ni, Cr and Mo were economically recovered from high alloy content steelplant dusts for recycling. Five Electric Arc Furnace dusts were smelted to produce a non-toxic residue and recover the contained zinc to an enriched zinc oxide product for recycling. It should be possible to condense the zinc vapour directly in a zinc splash condenser to increase the value of the product. Because of the limited power available from plasma generators, plasma processes will be most suitable for treating high and medium value materials such as Au, Pt, Mo, Ni, Ti, V, Cr etc at small production rates, heating metals in tundishes and ladles and remelting superalloy scrap. The treatment of environmentally hazardous waste materials is a particularly interesting application because of the additional financial incentives. Non-transferred arc plasma generators will be used for air and gas preheating in blast furnaces to reduce metallurgical coke consumptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the first part of a study of the combustion processes in an industrial radiant tube burner (RTB). The RTB is used typically in heat-treating furnaces. The work was initiated because of the need for improvements in burner lifetime and performance. The present paper is concerned with the flow of combustion air; a future paper will address the combusting flow. A detailed three-dimensional computational fluid dynamics model of the burner was developed, validated with experimental air flow velocity measurements using a split-film probe. Satisfactory agreement was achieved using the k-e turbulence model. Various features along the air inlet passage were subsequently analysed. The effectiveness of the air recuperator swirler was found to be significantly compromised by the need for a generous assembly tolerance. Also, a substantial circumferential flow maldistribution introduced by the swirler is effectively removed by the positioning of a constriction in the downstream passage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a study of the combustion process in an industrial radiant tube burner (RTB), used in heat treating furnaces, as part of an attempt to improve burner performance. A detailed three-dimensional Computational Fluid Dynamics model has been used, validated with experimental test furnace temperature and flue gas composition measurements. Simulations using the Eddy Dissipation combustion model with peak temperature limitation and the Discrete Transfer radiation model showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust (including NO). Other combustion and radiation models were also tested but gave inferior results in various aspects. The effects of certain RTB design features are analysed, and an analysis of the heat transfer processes within the burner is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente, uma organização industrial com vista a singrar no mercado global é fortemente influenciada por pressões que visam o aumento da eficiência global e consequente redução de custos operacionais. O desafio para as mesmas passa, portanto, por expurgar do produto tudo aquilo que não lhe acrescenta valor percetível pelo cliente e por maximizar a utilização dos vários recursos industriais instalados. No seguimento deste desafio, surge o Problema de Planeamento e Programação da Produção, ao qual é necessário dar uma resposta eficiente. Este projeto tem como objetivo estudar o problema da Programação da Produção numa indústria de pavimentos e revestimentos cerâmicos, desenvolvendo uma heurística construtiva capaz de traduzir com fiabilidade a realidade do processo produtivo da mesma e, se possível, auxiliar na sua resolução. O problema da programação da produção em estudo visa responder às questões: o quê, em que quantidade, quando e em que linha produzir, por forma a satisfazer as necessidades dos clientes num prazo previamente estipulado como admissível, garantindo o enchimento dos fornos ligados. Sem grandes constrangimentos ao normal lavor da Produção, pretende obter-se com a heurística planos de produção viáveis, que minimizem o tempo necessário para a conclusão do conjunto de referências com necessidades produtivas. O problema é também abordado através de um modelo exato como um problema de máquinas paralelas idênticas capacitado, com matriz de compatibilidades, setups de família e de subfamília e com lotes mínimos de produção. Quer a heurística quer o modelo de programação inteira mista desenvolvidos permitem obter planos de produção válidos, equivalentes aos obtidos atualmente pela empresa através dos meios de programação atuais, embora com um dispêndio de tempo muito inferior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the early 1950s Australia mined little bauxite and produced no alumina, that being the chemically pure aluminium oxide which is extracted from bauxite and then smelted in electric furnaces to produce aluminium metal. The huge costs of aluminium production meant that, after World War II, six large companies dominated the aluminium industry worldwide, from mining bauxite through to fabricating and selling metal. These were Alcoa, Reynolds Metals and Kaiser in the United States, Alcan in Canada, Pechiney in France and Alusuisse in Switzerland. In the 1940s the Chifley government planned a small aluminium smelter in Tasmania largely for defence purposes, and originally dependent on imported bauxite. Government co-operation with industry to search for indigenous bauxite feedstock for the smelter saw two discoveries of bauxite at about the same time in northern Australia in the 1950s-the first at Gove in the Northern Territory and the second, much larger find, across the Gulf of Carpentaria in Queensland. These two discoveries and the proving of bauxite deposits of commercial grade in Western Australia a few years later meant that Australia possessed an astonishing one third of the world's bauxite by the early 1960s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low temperature diffusion treatments with nitrogen and carbon have been widely used to increase the tribological performance of austenitic stainless steels. These processes produce a layer of supersaturated austenite, usually called expanded austenite or S-phase, which exhibits good corrosion and wear resistance. The novel active screen technology is said to provide benefits over the conventional DC plasma technology. The improvements result from the reduction in the electric potential applied to the treated components, and the elimination of such defects and processing instabilities as edge effects, hollow cathode effects and arcing. In this study, AISI 316 coupon samples were plasma carburised in DC and active screen plasma furnaces. The respective layers of carbon expanded austenite were characterised and their tribological performance was studied and compared. Detailed post-test examinations included SEM observations of the wear tracks and of the wear debris, EDX mapping of the wear track, EBSD crystal orientation mapping of the cross sections of the wear tracks, and cross-sectional TEM. Based on the results of wear tests and post-test examinations, the wear mechanisms involved are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active screen (AS) is an advanced technology for plasma surface engineering, which offers some advantages over conventional direct current (DC) plasma treatments. Such surface defects and process instabilities as arcing, edge and hollow cathode effects can be minimised or completely eliminated by the AS technique, with consequent improvements in surface quality and material properties. However, the lack of information and thorough understanding of the process mechanisms generate scepticism in industrial practitioners. In this project, AISI 316 specimens were plasma carburised and plasma nitrided at low temperature in AS and DC furnaces, and the treated samples were comparatively analysed. Two diagnostic techniques were used to study the plasma: optical fibre assisted optical emission spectroscopy, and a planar electrostatic probe. Optimum windows of treatment conditions for AS plasma nitriding and AS plasma carburising of austenitic stainless steel were identified and some evidence was obtained on the working principles of AS furnaces. These include the sputtering of material from the cathodic mesh and its deposition on the worktable, the generation of additional active species, and the electrostatic confinement of the plasma within the operative volume of the furnace.