924 resultados para Functional Approach


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: In the presence of turbinate dysfunction, an inferior turbinectomy for persistent hypertrophy of bone and/or mucosa may be performed. We sought to explore anatomic feasibility of a transoral turbinectomy. Methods: After transoral inferior turbinectomy in 12 cadavers, average distances from the external nasal valve to inferior turbinate and from pyriform aperture to inferior turbinate were compared. Average "area of access" was calculated. Preoperative and postoperative nasal length, tip projection, and alar-base width were also compared. Results: Average distance from external nasal valve to inferior turbinate was 32.4 mm. Average distance from aperture to inferior turbinate was 2.4 mm (P < 0.0001). Average "areas of access" to nasal vault through the external nasal valve and mouth were 183.9 mm(2) and 243.6 mm(2) (P = 0.07), respectively. Conclusions: The transoral approach provides a larger "area of access" to the turbinate, a statistically significant reduction of distance to target, no postoperative changes in nasal soft tissue, and easier instrumentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questa tesi sono state applicate le tecniche del gruppo di rinormalizzazione funzionale allo studio della teoria quantistica di campo scalare con simmetria O(N) sia in uno spaziotempo piatto (Euclideo) che nel caso di accoppiamento ad un campo gravitazionale nel paradigma dell'asymptotic safety. Nel primo capitolo vengono esposti in breve alcuni concetti basilari della teoria dei campi in uno spazio euclideo a dimensione arbitraria. Nel secondo capitolo si discute estensivamente il metodo di rinormalizzazione funzionale ideato da Wetterich e si fornisce un primo semplice esempio di applicazione, il modello scalare. Nel terzo capitolo è stato studiato in dettaglio il modello O(N) in uno spaziotempo piatto, ricavando analiticamente le equazioni di evoluzione delle quantità rilevanti del modello. Quindi ci si è specializzati sul caso N infinito. Nel quarto capitolo viene iniziata l'analisi delle equazioni di punto fisso nel limite N infinito, a partire dal caso di dimensione anomala nulla e rinormalizzazione della funzione d'onda costante (approssimazione LPA), già studiato in letteratura. Viene poi considerato il caso NLO nella derivative expansion. Nel quinto capitolo si è introdotto l'accoppiamento non minimale con un campo gravitazionale, la cui natura quantistica è considerata a livello di QFT secondo il paradigma di rinormalizzabilità dell'asymptotic safety. Per questo modello si sono ricavate le equazioni di punto fisso per le principali osservabili e se ne è studiato il comportamento per diversi valori di N.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The treatment of amelogenesis imperfecta (AI) with an anterior open bite (AOB) is a challenge for the clinician and often requires a multidisciplinary team of specialists. Most often, patients suffering from these conditions are young and a good functional and esthetic long-term result must be aspired. This clinical report illustrates the orthodontic, maxillofacial, restorative, and prosthodontic rehabilitation of a 20-year-old woman with a hypoplastic form of AI and an AOB malocclusion, having received treatment for the last 6 years. It included adhesive resin composite restorations, orthodontical and maxillofacial surgery with a one-piece Le Fort I osteotomy, and a genioplasty. Subsequent prosthodontic therapy consisted of 28 all-ceramic crowns whereby a solid interdigitation, a canine guidance, and consistent and regular contacts between tooth crowns could be achieved to assure a good functional and esthetic oral situation. The tooth preparation techniques guaranteed minimally invasive treatment. The patient was affected very positively. CLINICAL SIGNIFICANCE: This article describes an interdisciplinary approach to the successful treatment of a patient with a hypoplastic form of amelogenesis imperfecta over a period of 6 years. It starts with a discussion of the conservative steps taken during adolescence and concludes with the final prosthetic rehabilitation with all-ceramic crowns after reaching adulthood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Stable anatomical reconstruction of the joint surface in ankle fractures is essential to successful recovery. However, the functional outcome of fractures involving the posterior tibial plafond is often poor. We describe the morbidity and functional outcome for plate fixation of the displaced posterior malleolus using a posterolateral approach. MATERIALS AND METHODS: The posterolateral approach was used for osteosynthesis of the posterior malleolus in 45 consecutive patients (median age 54 years) with AO/Muller-classification type 44-A3 (n = 1), 44-B3 (n = 35), 44-C1 (n = 7), and 44-C2 (n = 2) ankle fractures. Thirty-three of the patients suffered complete fracture dislocation. Functional outcome at followup was measured using the modified Weber protocol and the standardized AAOS foot and ankle questionnaire. Radiological evaluation employed standardized anterior-posterior and lateral views. RESULTS: The fragment comprised a median of 24% (range, 10% to 48%) of the articular surface. Postoperative soft tissue problems were encountered in five patients (11%), one of whom required revision surgery. Two patients (4%) developed Stage I complex regional pain syndrome. Clinical and radiological followup at 25 months disclosed no secondary displacement of the fixed fragment. The median foot and ankle score was 93 (range, 58 to 100), shoe comfort score was 77 (range, 0 to 100). A median score of 7 (range, 5 to 16) was documented using the modified Weber protocol. CONCLUSION: The posterolateral approach allowed good exposure and stable fixation of a displaced posterior malleolar fragment with few local complications. The anatomical repositioning and stable fixation led to good functional and subjective outcome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer is caused by a complex pattern of molecular perturbations. To understand the biology of cancer, it is thus important to look at the activation state of key proteins and signaling networks. The limited amount of available sample material from patients and the complexity of protein expression patterns make the use of traditional protein analysis methods particularly difficult. In addition, the only approach that is currently available for performing functional studies is the use of serial biopsies, which is limited by ethical constraints and patient acceptance. The goal of this work was to establish a 3-D ex vivo culture technique in combination with reverse-phase protein microarrays (RPPM) as a novel experimental tool for use in cancer research. The RPPM platform allows the parallel profiling of large numbers of protein analytes to determine their relative abundance and activation level. Cancer tissue and the respective corresponding normal tissue controls from patients with colorectal cancer were cultured ex vivo. At various time points, the cultured samples were processed into lysates and analyzed on RPPM to assess the expression of carcinoembryonic antigen (CEA) and 24 proteins involved in the regulation of apoptosis. The methodology displayed good robustness and low system noise. As a proof of concept, CEA expression was significantly higher in tumor compared with normal tissue (p<0.0001). The caspase 9 expression signal was lower in tumor tissue than in normal tissue (p<0.001). Cleaved Caspase 8 (p=0.014), Bad (p=0.007), Bim (p=0.007), p73 (p=0.005), PARP (p<0.001), and cleaved PARP (p=0.007) were differentially expressed in normal liver and normal colon tissue. We demonstrate here the feasibility of using RPPM technology with 3-D ex vivo cultured samples. This approach is useful for investigating complex patterns of protein expression and modification over time. It should allow functional proteomics in patient samples with various applications such as pharmacodynamic analyses in drug development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal inter-personal brain mechanisms underlying interaction-mediated brain-to-brain coupling. These mechanisms are engaged during real social interactions, and cannot be captured using single-subject recordings. In particular, functional near-infrared imaging (fNIRI) hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nondeterminism and partially instantiated data structures give logic programming expressive power beyond that of functional programming. However, functional programming often provides convenient syntactic features, such as having a designated implicit output argument, which allow function cali nesting and sometimes results in more compact code. Functional programming also sometimes allows a more direct encoding of lazy evaluation, with its ability to deal with infinite data structures. We present a syntactic functional extensión, used in the Ciao system, which can be implemented in ISO-standard Prolog systems and covers function application, predefined evaluable functors, functional definitions, quoting, and lazy evaluation. The extensión is also composable with higher-order features and can be combined with other extensions to ISO-Prolog such as constraints. We also highlight the features of the Ciao system which help implementation and present some data on the overhead of using lazy evaluation with respect to eager evaluation.