938 resultados para Full wave analysis
Resumo:
Gran cantidad de servicios de telecomunicación tales como la distribución de televisión o los sistemas de navegación están basados en comunicaciones por satélite. Del mismo modo que ocurre en otras aplicaciones espaciales, existe una serie de recursos clave severamente limitados, tales como la masa o el volumen. En este sentido, uno de los dispositivos pasivos más importantes es el diplexor del sistema de alimentación de la antena. Este dispositivo permite el uso de una única antena tanto para transmitir como para recibir, con la consiguiente optimización de recursos que eso supone. El objetivo principal de este trabajo es diseñar un diplexor que cumpla especificaciones reales de comunicaciones por satélite. El dispositivo consiste en dos estructuras filtrantes unidas por una bifurcación de tres puertas. Además, es imprescindible utilizar tecnología de guía de onda para su implementación debido a los altos niveles de potencia manejados. El diseño del diplexor se lleva a cabo dividiendo la estructura en diversas partes, con el objetivo de que todo el proceso sea factible y eficiente. En primer lugar, se han desarrollado filtros con diferentes respuestas – paso alto, paso bajo y paso banda – aunque únicamente dos de ellos formarán el diplexor. Al afrontar su diseño inicial, se lleva a cabo un proceso de síntesis teórica utilizando modelos circuitales. A continuación, los filtros se optimizan con técnicas de diseño asistido por ordenador (CAD) full-wave, en concreto mode matching. En este punto es esencial analizar las estructuras y su simetría para determinar qué modos electromagnéticos se están propagando realmente por los dispositivos, para así reducir el esfuerzo computacional asociado. Por último, se utiliza el Método de los Elementos Finitos (FEM) para verificar los resultados previamente obtenidos. Una vez que el diseño de los filtros está terminado, se calculan las dimensiones correspondientes a la bifurcación. Finalmente, el diplexor al completo se somete a un proceso de optimización para cumplir las especificaciones eléctricas requeridas. Además, este trabajo presenta un novedoso valor añadido: la implementación física y la caracterización experimental tanto del diplexor como de los filtros por separado. Esta posibilidad, impracticable hasta ahora debido a su elevado coste, se deriva del desarrollo de las técnicas de manufacturación aditiva. Los prototipos se imprimen en plástico (PLA) utilizando una impresora 3D de bajo coste y posteriormente se metalizan. El uso de esta tecnología conlleva dos limitaciones: la precisión de las dimensiones geométricas (±0.2 mm) y la conductividad de la pintura metálica que recubre las paredes internas de las guías de onda. En este trabajo se incluye una comparación entre los valores medidos y simulados, así como un análisis de los resultados experimentales. En resumen, este trabajo presenta un proceso real de ingeniería: el problema de diseñar un dispositivo que satisfaga especificaciones reales, las limitaciones causadas por el proceso de fabricación, la posterior caracterización experimental y la obtención de conclusiones.
Resumo:
Una célula TEM es un sistema concebido para conseguir en una determinada zona del espacio un campo electromagnético de forma controlada cuyo comportamiento tienda lo más posible al de una onda plana, aprovechando para ello ciertas propiedades asociadas al modo TEM. En este proyecto se analizan, desde el punto de vista electromagnnético, algunos tipos de células TEM. Tras una breve descripción de las diferentes geometrías que éstas pueden tomar y de las aplicaciones asociadas a las mismas, se estudian algunas de las técnicas de ajuste de campo (Resonancia Transversal y Ajuste Modal) con el fin de obtener los conocimientos necesarios para implementar una herramienta computacional que permita la determinación electromagnética completa "Full-Wave"del problema planteado. Una vez desarrollada, se emplearán los resultados derivados de la misma para analizar ciertos fenómenos que se producen en este tipo de sistemas y que nos aportará un conocimiento profundo sobre los mismos con vista a concebir estrategias de diseño que permitan optimizar su funcionamiento.
Resumo:
Multijunction solar cells (MJSC) use anti-reflective coatings (ARC) to minimize Fresnel reflection losses for a family of light incidence angles. These coatings adapt the refractive index of the cell to that of the surrounding medium. Patterns with sizes in the range of the light wavelength can be used to further reduce reflections through diffraction. Transparent nanopatterns with a gradual profile, called moth-eye nanostructures, can adapt the refractive index of the optical interfaces (often with n∼1.5) used to encapsulate concentrator solar cells to that of the air (n air∼1). Here we show the effect of a nanometric moth-eye ARC with a round motif deposited on commercial MJSC that achieves short-circuit current (I SC) gains greater than 2% at normal incidence and even higher in the case of tilted illumination. In this work, MJSC with different moth-eye ARC are characterized under quantum efficiency (QE) as well as under concentrated illumination I-V in order to assess their potential. Simulations based on coupled wave analysis (RCWA) are used to fit the experimental results with successful results.
Resumo:
The cytokinin group of plant hormones regulates aspects of plant growth and development, including the release of lateral buds from apical dominance and the delay of senescence. In this work the native promoter of a cytokinin synthase gene (ipt) was removed and replaced with a Cu-controllable promoter. Tobacco (Nicotiana tabacum L. cv tabacum) transformed with this Cu-inducible ipt gene (Cu-ipt) was morphologically identical to controls under noninductive conditions in almost all lines produced. However, three lines grew in an altered state, which is indicative of cytokinin overproduction and was confirmed by a full cytokinin analysis of one of these lines. The in vitro treatment of morphologically normal Cu-ipt transformants with Cu2+ resulted in delayed leaf senescence and an increase in cytokinin concentration in the one line analyzed. In vivo, inductive conditions resulted in a significant release of lateral buds from apical dominance. The morphological changes seen during these experiments may reflect the spatial aspect of control exerted by this gene expression system, namely expression from the root tissue only. These results confirmed that endogenous cytokinin concentrations in tobacco transformants can be temporally and spatially controlled by the induction of ipt gene expression through the Cu-controllable gene-expression system.
Resumo:
INTRODUÇÃO:A rigidez arterial aumentada é um importante determinante do risco cardiovascular e um forte preditor de morbimortalidade. Além disso, estudos demonstram que o enrijecimento vascular pode estar associado a fatores genéticos e metabólicos. Portanto,os objetivos do presente estudo são determinar a herdabilidade da velocidade de onda de pulso (VOP) e avaliar a associação do perfil lipídico e do controle glicêmico com o fenótipo de rigidez arterial em uma população brasileira.MÉTODOS:Foram selecionados 1675 indivíduos (ambos os gêneros com idade entre 18 e 102 anos) distribuídos em 109 famílias residentes no município de Baependi-MG. A VOP carótida-femoral foi avaliada de forma não invasiva através de um dispositivo automático.As variáveis lipídicas e a glicemia de jejum foram determinadas pelo método enzimático colorimétrico. Os níveis de hemoglobina glicada (HbA1c) foram determinados pelo método de cromatografia líquida de alta eficiência. As estimativas da herdabilidade da VOP foram calculadas utilizando-se a metodologia de componentes de variância implementadas no software SOLAR. RESULTADOS: A herdabilidade estimada para a VOP foi de 26%, sendo ajustada para idade, gênero, HbA1c e pressão arterial média. Os níveis de HbA1c foram associados a rigidez arterial, onde a elevação de uma unidade percentual da HbA1c representou um incremento de 54% na chance de risco para rigidez arterial aumentada. As variáveis lipídicas (LDL-c, HDL-c, colesterol não- HDL-c, colesterol total e triglicérides) apresentaram fraca correlação com a VOP. Além disso, uma análise de regressão linear estratificada para idade (ponto de corte >= 45 anos) demonstrou uma relação inversa entre LDL-c e VOP em mulheres com idade >= 45 anos. CONCLUSÃO: Os resultados indicam que a VOP apresenta herdabilidade intermediária (26%); a HbA1c esta fortemente associada a rigidez arterial aumentada; o LDL-c é inversamente relacionado com a VOP em mulheres com idade >= 45 anos, possivelmente devido às alterações metabólicas associadas à falência ovariana
Resumo:
Aims Alpha-lipoic acid (ALA) is a thiol compound with antioxidant properties used in the treatment of diabetic polyneuropathy. ALA may also improve arterial function, but there have been scant human trials examining this notion. This project aimed to investigate the effects of oral and intra-arterial ALA on changes in systemic and regional haemodynamics, respectively. Methods In study 1, 16 healthy older men aged 58 +/- 7 years (mean +/- SD) received 600 mg of ALA or placebo, on two occasions 1 week apart, in a randomized cross-over design. Repeated measures of peripheral and central haemodynamics were then obtained for 90 min. Central blood pressure and indices of arterial stiffness [augmentation index (AIx) and estimated aortic pulse wave velocity] were recorded non-invasively using pulse wave analysis. Blood samples obtained pre- and post-treatments were analysed for erythrocyte antioxidant enzyme activity, plasma nitrite and malondialdehyde. In study 2 the effects of incremental cumulative doses (0.5, 1.0, 1.5 and 2.0 mg ml(-1) min(-1)) of intra-arterial ALA on forearm blood flow (FBF) were assessed in eight healthy subjects (aged 31 +/- 5 years) by conventional venous occlusion plethysmography. Results There were no significant changes on any of the central or peripheral haemodynamic measures after either oral or direct arterial administration of ALA. Plasma ALA was detected after oral supplementation (95% confidence intervals 463, 761 ng ml(-1)), but did not alter cellular or plasma measures of oxidative stress. Conclusions Neither oral nor intra-arterial ALA had any effect on regional and systemic haemodynamics or measures of oxidative stress in healthy men.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background Brachial blood pressure predicts cardiovascular outcome at rest and during exercise. However, because of pulse pressure amplification, there is a marked difference between brachial pressure and central (aortic) pressure. Although central pressure is likely to have greater clinical importance, very little data exist regarding the central haemodynamic response to exercise. The aim of the present study was to determine the central and peripheral haemodynamic response to incremental aerobic exercise. Materials and methods Twelve healthy men aged 31 +/- 1 years (mean +/- SEM) exercised at 50%, 60%, 70% and 80% of their maximal heart rate (HRmax) on a bicycle ergometer. Central blood pressure and estimated aortic pulse wave velocity, assessed by timing of the reflected wave (T-R), were obtained noninvasively using pulse wave analysis. Pulse pressure amplification was defined as the ratio of peripheral to central pulse pressure and, to assess the influence of wave reflection on amplification, the ratio of peripheral pulse pressure to nonaugmented central pulse pressure (PPP : CDBP-P-1) was also calculated. Results During exercise, there was a significant, intensity-related, increase in mean arterial pressure and heart rate (P < 0.001). There was also a significant increase in pulse pressure amplification and in PPP : CDBP-P-1 (P < 0.001), but both were independent of exercise intensity. Estimated aortic pulse wave velocity increased during exercise (P < 0.001), indicating increased aortic stiffness. There was also a positive association between aortic pulse wave velocity and mean arterial pressure (r = 0.54; P < 0.001). Conclusions Exercise significantly increases pulse pressure amplification and estimated aortic stiffness.
Resumo:
Exercise brachial blood pressure ( BP) predicts mortality, but because of wave reflection, central ( ascending aortic) pressure differs from brachial pressure. Exercise central BP may be clinically important, and a noninvasive means to derive it would be useful. The purpose of this study was to test the validity of a noninvasive technique to derive exercise central BP. Ascending aortic pressure waveforms were recorded using a micromanometer-tipped 6F Millar catheter in 30 patients (56 +/- 9 years; 21 men) undergoing diagnostic coronary angiography. Simultaneous recordings of the derived central pressure waveform were acquired using servocontrolled radial tonometry at rest and during supine cycling. Pulse wave analysis of the direct and derived pressure signals was performed offline (SphygmoCor 7.01). From rest to exercise, mean arterial pressure and heart rate were increased by 20 +/- 10 mm Hg and 15 +/- 7 bpm, respectively, and central systolic BP ranged from 77 to 229 mm Hg. There was good agreement and high correlation between invasive and noninvasive techniques with a mean difference (+/- SD) for central systolic BP of -1.3 +/- 3.2 mm Hg at rest and -4.7 +/- 3.3 mm Hg at peak exercise ( for both r=0.995; P < 0.001). Conversely, systolic BP was significantly higher peripherally than centrally at rest (155 +/- 33 versus 138 +/- 32mm Hg; mean difference, -16.3 +/- 9.4mm Hg) and during exercise (180 +/- 34 versus 164 +/- 33 mm Hg; mean difference, -15.5 +/- 10.4 mm Hg; for both P < 0.001). True myocardial afterload is not reliably estimated by peripheral systolic BP. Radial tonometry and pulse wave analysis is an accurate technique for the noninvasive determination of central BP at rest and during exercise.
Resumo:
The wire drive pulse-echo system has been extensively used to excite and measure modes of vibration of thin rectangular plates. The frequency spectra of different modes have been investigated as a function of the material elastic moduli and the plate geometry. Most of the work was carried out on isotropic materials. For square plates a wide selection of materials were used. These were made isotropic in their in-plane dimensions where the displacements are taking place. The range of rnaterials enabled the dependence on Poisson's ratio to be investigated. A method of determining the value of Poisson's ratio resulted from this investigation. Certain modes are controlled principally by the shear modulus. Of these the fundamental has two nodal lines across the plate surface. One of them, which has nodes at the corners, (the Lame mode) is uniquely a pure shear mode where the diagonal is a full wave length. One controlled by the Young's modulus has been found. The precise harmonic relationship of the Lame mode series in square and rectangular plates was established. Use of the Rayleigh-Lamb equation has extended the theoretical support. The low order modes were followed over a wide range of sides ratios. Two fundamental types of modes have been recognised; These are the longitudinal modes where the frequency is controlled by the length of the plate only and the 2~f product has an asymptotic value approaching the rod velocity. The other type is the in-plane flexural modes (in effect a flexurally vibrating bar where the -2/w is the geometrical parameter). Where possible the experimental work was related to theory. Other modes controlled by the width dimension of the plate were followed. Anisotropic materials having rolled sheet elastic symmetry were investigated in terms of the appropriate theory. The work has been extended to examine materials from welds in steel plates.
Resumo:
The main aim of this thesis is to investigate the application of methods of differential geometry to the constraint analysis of relativistic high spin field theories. As a starting point the coordinate dependent descriptions of the Lagrangian and Dirac-Bergmann constraint algorithms are reviewed for general second order systems. These two algorithms are then respectively employed to analyse the constraint structure of the massive spin-1 Proca field from the Lagrangian and Hamiltonian viewpoints. As an example of a coupled field theoretic system the constraint analysis of the massive Rarita-Schwinger spin-3/2 field coupled to an external electromagnetic field is then reviewed in terms of the coordinate dependent Dirac-Bergmann algorithm for first order systems. The standard Velo-Zwanziger and Johnson-Sudarshan inconsistencies that this coupled system seemingly suffers from are then discussed in light of this full constraint analysis and it is found that both these pathologies degenerate to a field-induced loss of degrees of freedom. A description of the geometrical version of the Dirac-Bergmann algorithm developed by Gotay, Nester and Hinds begins the geometrical examination of high spin field theories. This geometric constraint algorithm is then applied to the free Proca field and to two Proca field couplings; the first of which is the minimal coupling to an external electromagnetic field whilst the second is the coupling to an external symmetric tensor field. The onset of acausality in this latter coupled case is then considered in relation to the geometric constraint algorithm.
Resumo:
The aims of the work reported in this thesis are: (1) To investigate the application of a Wave Analysis Approach in the study of the acoustics of small rooms where the conditions for a Geometrical Statistical Analysis are not valid.
Resumo:
Purpose: To investigate the coexistence of ocular microvascular and systemic macrovascular abnormalities in early stage, newly diagnosed and previously untreated normal tension glaucoma patients (NTG). Methods: Retinal vascular reactivity to flickering light was assessed in 19 NTG and 28 age-matched controls by means of dynamic retinal vessel analysis (IMEDOS GmbH, Jena, Germany). Using a newly developed computational model, the entire dynamic vascular response profile to flicker light was imaged and used for analysis. In addition, assessments of carotid intima-media thickness (IMT) and pulse wave analysis (PWA) were conducted on all participants, along with blood pressure (BP) measurements and blood analyses for lipid metabolism markers. Results: Patients with NTG demonstrated an increased right and left carotid IMT (p = 0.015, p = 0.045) and an elevated PWA augmentation index (p = 0.017) in comparison with healthy controls, along with an enhanced retinal arterial constriction response (p = 0.028), a steeper retinal arterial constriction slope (p = 0.031) and a reduced retinal venous dilation response (p = 0.026) following flicker light stimulation. Conclusions: Early stage, newly diagnosed, NTG patients showed signs of subclinical vascular abnormalities at both macro- and micro-vascular levels, highlighting the need to consider multi-level circulation-related pathologies in the development and progression of this type of glaucoma.
Resumo:
Objective: To compare and contrast the presence of ocular and systemic vascular function in newly diagnosed and previously untreated primary open angle glaucoma (POAG) and normal tension glaucoma (NTG) patients with comparable, early stage, functional loss. Methods: The systemic vascular function of 19 POAG patients, 19 NTG patients and 20 healthy controls was assessed by means of 24 hour ambulatory blood pressure (ABPM), peripheral pulse wave analysis (PWA) and carotid intima-media thickness (IMT). Retinal vascular reactivity to flicker light was assessed using dynamic retinal vessel analysis (DVA,IMEDOS, GmbH, Jena, Germany). Results: When compared to normal controls, both POAG and NTG patients exhibited similarly increased nocturnal systemic blood pressure variability (p=0.011); peripheral arterial stiffness (p=0.015), carotid IMT (p=0.040) and reduced ocular perfusion pressure (OPP) (p<0.001). Furthermore, on DVA analysis, both groups of glaucoma patients also exhibited steeper retinal arterial constriction slopes (slope AC) following cessation of flicker (p=0.007) and a similarly increased fluctuation in arterial and venous baseline diameter (p=0.008 and p=0.009 respectively) in comparison to controls. Conclusion: POAG and NTG patients exhibit similar alterations in both ocular and systemic circulation at the early stages of their disease process. This highlights not only the importance of considering vascular risk factors in both conditions, but also raises questions about the current separation of the two conditions into completely distinct clinical entities.
Resumo:
In this paper, we numerically investigate the impact of polarisation mode dispersion on the efficiency of compensation of nonlinear transmission penalties for systems employing one of more inline phase conjugation devices. We will show that reducing the spacing between phase conjugations allows for significantly improved performance in the presence polarisation mode dispersion or a significant relaxation in the acceptable level of polarization mode dispersion. We show that these results are consistent with previously presented full statistical analysis of nonlinear transmission appropriately adjusted for the reduced section length undergoing compensation.