910 resultados para Fronts of expansion
Resumo:
Introduction : The source and deployment of finance are central issues in economic development. Since 1966, when the Soeharto Administration was inaugurated, Indonesian economic development has relied on funds in the form of aid from international organizations and foreign countries. After the 1990s, a further abundant inflow of capital sustained a rapid economic development. Foreign funding was the basis of Indonesian economic growth. This paper will describe the mechanism for allocating funds in the Indonesian economy. It will identify the problems this mechanism generated in the Indonesian experience, and it will attempt to explain why there was a collapse of the financial system in the wake of the Asian Currency Crisis of 1997. History of the Indonesian Financial system The year 1966 saw the emergence of commercial banks in Indonesia. It can be said that before 1966 a financial system hardly existed, a fact commonly attributed to economic disruptions like the consecutive runs of fiscal deficit and hyperinflation under the Soekarno Administration. After 1996, with the inauguration of Soeharto, a regulatory system of financial legislation, e.g. central banking law and banking regulation, was introduced and implemented, and the banking sector that is the basis of the current financial system in Indonesia was built up. The Indonesian financial structure was significantly altered at the first financial reform of 1983. Between 1966 and 1982, the banking sector consisted of Bank Indonesia (the Central Bank) and the state-owned banks. There was also a system for distributing the abundant public revenue derived from the soaring oil price of the 1970s. The public finance distribution function, incorporated in Indonesian financial system, changed after the successive financial reforms of 1983 and 1988, when there was a move away from the monopoly-market style dominated by state-owned banks (which was a system of public finance distribution that operated at the discretion of the government) towards a modern market mechanism. The five phases of development The Indonesian financial system developed in five phases between 1966 and the present time. The first period (1966-72) was its formative period, the second (1973-82) its policy based finance period under soaring oil prices, the third (1983-91) its financial-reform period, the fourth (1992-97) its period of expansion, and the fifth (1998-) its period of financial restructuring. The first section of this paper summarizes the financial policies operative during each of the periods identified above. In the second section changes to the financial sector in response to policies are examined, and an analysis of these changes shows that an important development of the financial sector occurred during the financial reform period. In the third section the focus of analysis shifts from the general financial sector to particular commercial banks’ performances. In the third section changes in commercial banks’ lending and fund-raising behaviour after the 1990s are analysed by comparing several banking groups in terms of their ownership and foundation time. The last section summarizes the foregoing analyses and examines the problems that remain in the Indonesian financial sector, which is still undergoing restructuring.
Resumo:
Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the universe
Resumo:
This paper introduces novel calibration processes applied to antenna arrays with new architectures and technologies designed to improve the performance of traditional earth stations for satellite communications due to the increasing requirement of data capacity during last decades. Besides, the Radiation Group from the Technical University of Madrid has been working on the development of new antenna arrays based on novel architecture and technologies along many projects as a solution for the ground segment in the early future. Nowadays, the calibration process is an interesting and cutting edge research field in a period of expansion with a lot of work to do for calibration in transmission and also for reception of these novel antennas under development.
Resumo:
The advancement of science and engineering projects is brewing major changes in the various phases of a project. These changes have produced more rigorous aspects of project management that tracks the research fronts of engineering and project management becomes key. However, research in engineering and project management in Spanish is hindered by access to information to enable the person concerned to ascertain the most recent and current research, limiting the exchange of information and strengthening research networks in this field interest with great implications in business, industry and scientific issues. Therefore, the article aims to present the state of the art of engineering research and project management in Spanish, using the analysis of scientific domains and network analysis of the research literature to identify and analyze relationships between authors and documents that establish the base and research fronts topic under study. The results also provide statistics on the contribution of international research in Spanish and scientific collaboration networks.
Resumo:
We analyzed the effect of short-term water deficits at different periods of sunflower (Helianthus annuus L.) leaf development on the spatial and temporal patterns of tissue expansion and epidermal cell division. Six water-deficit periods were imposed with similar and constant values of soil water content, predawn leaf water potential and [ABA] in the xylem sap, and with negligible reduction of the rate of photosynthesis. Water deficit did not affect the duration of expansion and division. Regardless of their timing, deficits reduced relative expansion rate by 36% and relative cell division rate by 39% (cells blocked at the G0-G1 phase) in all positions within the leaf. However, reductions in final leaf area and cell number in a given zone of the leaf largely differed with the timing of deficit, with a maximum effect for earliest deficits. Individual cell area was only affected during the periods when division slowed down. These behaviors could be simulated in all leaf zones and for all timings by assuming that water deficit affects relative cell division rate and relative expansion rate independently, and that leaf development in each zone follows a stable three-phase pattern in which duration of each phase is stable if expressed in thermal time (C. Granier and F. Tardieu [1998b] Plant Cell Environ 21: 695–703).
Resumo:
We tested the hypothesis that the degree of anisotropic expansion of plant tissues is controlled by the degree of alignment of cortical microtubules or cellulose microfibrils. Previously, for the primary root of maize (Zea mays L.), we quantified spatial profiles of expansion rate in length, radius, and circumference and the degree of growth anisotropy separately for the stele and cortex, as roots became thinner with time from germination or in response to low water potential (B.M. Liang, A.M. Dennings, R.E. Sharp, T.I. Baskin [1997] Plant Physiol 115:101–111). Here, for the same material, we quantified microtubule alignment with indirect immunofluorescence microscopy and microfibril alignment throughout the cell wall with polarized-light microscopy and from the innermost cell wall layer with electron microscopy. Throughout much of the growth zone, mean orientations of microtubules and microfibrils were transverse, consistent with their parallel alignment specifying the direction of maximal expansion rate (i.e. elongation). However, where microtubule alignment became helical, microfibrils often made helices of opposite handedness, showing that parallelism between these elements was not required for helical orientations. Finally, contrary to the hypothesis, the degree of growth anisotropy was not correlated with the degree of alignment of either microtubules or microfibrils. The mechanisms plants use to specify radial and tangential expansion rates remain uncharacterized.