916 resultados para Frequency response functions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite rapid to-and-fro motion of the retinal image that results from their incessant involuntary eye movements, persons with infantile nystagmus (IN) rarely report the perception of motion smear. We performed two experiments to determine if the reduction of perceived motion smear in persons with IN is associated with an increase in the speed of the temporal impulse response. In Experiment 1, increment thresholds were determined for pairs of successively presented flashes of a long horizontal line, presented on a 65-cd/m2 background field. The stimulus-onset asynchrony (SOA) between the first and second flash varied from 5.9 to 234 ms. In experiment 2, temporal contrast sensitivity functions were determined for a 3-cpd horizontal square-wave grating that underwent counterphase flicker at temporal frequencies between 1 and 40 Hz. Data were obtained for 2 subjects with predominantly pendular IN and 8 normal observers in Experiment 1 and for 3 subjects with IN and 4 normal observers in Experiment 2. Temporal impulse response functions (TIRFs) were estimated as the impulse response of a linear second-order system that provided the best fit to the increment threshold data in Experiment 1 and to the temporal contrast sensitivity functions in Experiment 2. Estimated TIRFs of the subjects with pendular IN have natural temporal frequencies that are significantly faster than those of normal observers (ca. 13 vs. 9 Hz), indicating an accelerated temporal response to visual stimuli. This increase in response speed is too small to account by itself for the virtual absence of perceived motion smear in subjects with IN, and additional neural mechanisms are considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El tema central de investigación en esta Tesis es el estudio del comportamientodinámico de una estructura mediante modelos que describen la distribución deenergía entre los componentes de la misma y la aplicación de estos modelos parala detección de daños incipientes.Los ensayos dinámicos son un modo de extraer información sobre las propiedadesde una estructura. Si tenemos un modelo de la estructura se podría ajustar éstepara que, con determinado grado de precisión, tenga la misma respuesta que elsistema real ensayado. Después de que se produjese un daño en la estructura,la respuesta al mismo ensayo variará en cierta medida; actualizando el modelo alas nuevas condiciones podemos detectar cambios en la configuración del modeloestructural que nos condujeran a la conclusión de que en la estructura se haproducido un daño.De este modo, la detección de un daño incipiente es posible si somos capacesde distinguir una pequeña variación en los parámetros que definen el modelo. Unrégimen muy apropiado para realizar este tipo de detección es a altas frecuencias,ya que la respuesta es muy dependiente de los pequeños detalles geométricos,dado que el tamaño característico en la estructura asociado a la respuesta esdirectamente proporcional a la velocidad de propagación de las ondas acústicas enel sólido, que para una estructura dada es inalterable, e inversamente proporcionala la frecuencia de la excitación. Al mismo tiempo, esta característica de la respuestaa altas frecuencias hace que un modelo de Elementos Finitos no sea aplicable enla práctica, debido al alto coste computacional.Un modelo ampliamente utilizado en el cálculo de la respuesta de estructurasa altas frecuencias en ingeniería es el SEA (Statistical Energy Analysis). El SEAaplica el balance energético a cada componente estructural, relacionando la energíade vibración de estos con la potencia disipada por cada uno de ellos y la potenciatransmitida entre ellos, cuya suma debe ser igual a la potencia inyectada a cadacomponente estructural. Esta relación es lineal y viene caracterizada por los factoresde pérdidas. Las magnitudes que intervienen en la respuesta se consideranpromediadas en la geometría, la frecuencia y el tiempo.Actualizar el modelo SEA a datos de ensayo es, por lo tanto, calcular losfactores de pérdidas que reproduzcan la respuesta obtenida en éste. Esta actualización,si se hace de manera directa, supone la resolución de un problema inversoque tiene la característica de estar mal condicionado. En la Tesis se propone actualizarel modelo SEA, no en término de los factores de pérdidas, sino en términos deparámetros estructurales que tienen sentido físico cuando se trata de la respuestaa altas frecuencias, como son los factores de disipación de cada componente, susdensidades modales y las rigideces características de los elementos de acoplamiento.Los factores de pérdidas se calculan como función de estos parámetros. Estaformulación es desarrollada de manera original en esta Tesis y principalmente sefunda en la hipótesis de alta densidad modal, es decir, que en la respuesta participanun gran número de modos de cada componente estructural.La teoría general del método SEA, establece que el modelo es válido bajounas hipótesis sobre la naturaleza de las excitaciones externas muy restrictivas,como que éstas deben ser de tipo ruido blanco local. Este tipo de carga es difícil dereproducir en condiciones de ensayo. En la Tesis mostramos con casos prácticos queesta restricción se puede relajar y, en particular, los resultados son suficientementebuenos cuando la estructura se somete a una carga armónica en escalón.Bajo estas aproximaciones se desarrolla un algoritmo de optimización por pasosque permite actualizar un modelo SEA a un ensayo transitorio cuando la carga esde tipo armónica en escalón. Este algoritmo actualiza el modelo no solamente parauna banda de frecuencia en particular sino para diversas bandas de frecuencia demanera simultánea, con el objetivo de plantear un problema mejor condicionado.Por último, se define un índice de daño que mide el cambio en la matriz depérdidas cuando se produce un daño estructural en una localización concreta deun componente. Se simula numéricamente la respuesta de una estructura formadapor vigas donde producimos un daño en la sección de una de ellas; como se tratade un cálculo a altas frecuencias, la simulación se hace mediante el Método delos Elementos Espectrales para lo que ha sido necesario desarrollar dentro de laTesis un elemento espectral de tipo viga dañada en una sección determinada. Losresultados obtenidos permiten localizar el componente estructural en que se haproducido el daño y la sección en que éste se encuentra con determinado grado deconfianza.AbstractThe main subject under research in this Thesis is the study of the dynamic behaviourof a structure using models that describe the energy distribution betweenthe components of the structure and the applicability of these models to incipientdamage detection.Dynamic tests are a way to extract information about the properties of astructure. If we have a model of the structure, it can be updated in order toreproduce the same response as in experimental tests, within a certain degree ofaccuracy. After damage occurs, the response will change to some extent; modelupdating to the new test conditions can help to detect changes in the structuralmodel leading to the conclusión that damage has occurred.In this way incipient damage detection is possible if we are able to detect srnallvariations in the model parameters. It turns out that the high frequency regimeis highly relevant for incipient damage detection, because the response is verysensitive to small structural geometric details. The characteristic length associatedwith the response is proportional to the propagation speed of acoustic waves insidethe solid, but inversely proportional to the excitation frequency. At the same time,this fact makes the application of a Finite Element Method impractical due to thehigh computational cost.A widely used model in engineering when dealing with the high frequencyresponse is SEA (Statistical Energy Analysis). SEA applies the energy balance toeach structural component, relating their vibrational energy with the dissipatedpower and the transmitted power between the different components; their summust be equal to the input power to each of them. This relationship is linear andcharacterized by loss factors. The magnitudes considered in the response shouldbe averaged in geometry, frequency and time.SEA model updating to test data is equivalent to calculating the loss factorsthat provide a better fit to the experimental response. This is formulated as an illconditionedinverse problem. In this Thesis a new updating algorithm is proposedfor the study of the high frequency response regime in terms of parameters withphysical meaning such as the internal dissipation factors, modal densities andcharacteristic coupling stiffness. The loss factors are then calculated from theseparameters. The approach is developed entirely in this Thesis and is mainlybased on a high modal density asumption, that is to say, a large number of modescontributes to the response.General SEA theory establishes the validity of the model under the asumptionof very restrictive external excitations. These should behave as a local white noise.This kind of excitation is difficult to reproduce in an experimental environment.In this Thesis we show that in practical cases this assumption can be relaxed, inparticular, results are good enough when the structure is excited with a harmonicstep function.Under these assumptions an optimization algorithm is developed for SEAmodel updating to a transient test when external loads are harmonic step functions.This algorithm considers the response not only in a single frequency band,but also for several of them simultaneously.A damage index is defined that measures the change in the loss factor matrixwhen a damage has occurred at a certain location in the structure. The structuresconsidered in this study are built with damaged beam elements; as we are dealingwith the high frequency response, the numerical simulation is implemented witha Spectral Element Method. It has therefore been necessary to develop a spectralbeam damaged element as well. The reported results show that damage detectionis possible with this algorithm, moreover, damage location is also possible withina certain degree of accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a method to analyze and predict stability and transient performance of a distributed system where COTS (Commercial-off-the-shelf) modules share an input filter. The presented procedure is based on the measured data from the input and output terminals of the power modules. The required information for the analysis is obtained by performing frequency response measurements for each converter. This attained data is utilized to compute special transfer functions, which partly determine the source and load interactions within the converters. The system level dynamic description is constructed based on the measured and computed transfer functions introducing cross-coupling mechanisms within the system. System stability can be studied based on the well-known impedance- related minor-loop gain at an arbitrary interface within the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper discusses the use of sound waves to illustrate multipath radio propagation concepts. Specifically, a procedure is presented to measure the time-varying frequency response of the channel. This helps demonstrate how a propagation channel can be characterized in time and frequency, and provides visualizations of the concepts of coherence time and coherence bandwidth. The measurements are very simple to carry out, and the required equipment is easily available. The proposed method can be useful for wireless or mobile communication courses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents some of the modelling criteria that have been used for the study of pyrotechnic shock propagation in the A5 VEB Structure, as well as the main conclusions from a mathematical model of the axymmetric effects in it. The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB)Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion have been analyzed with a computer program using as shape functions the analytical solution to the frequency response of a Timoshenko-Rayleigh beams and shells in that way the discretization can have elements as large as possible, depending on the material properties and boundary conditions. Moreover an enormous amount of possibilities in the treatment of concentrated masses, springs and dashpots, either with respect to a fixed reference or between nodes, is open for translational as well as rotational degrees of freedom.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several groups all over the world are researching in several ways to render 3D sounds. One way to achieve this is to use Head Related Transfer Functions (HRTFs). These measurements contain the Frequency Response of the human head and torso for each angle. Some years ago, was only possible to measure these Frequency Responses only in the horizontal plane. Nowadays, several improvements have made possible to measure and use 3D data for this purpose. The problem was that the groups didn't have a standard format file to store the data. That was a problem when a third part wanted to use some different HRTFs for 3D audio rendering. Every of them have different ways to store the data. The Spatially Oriented Format for Acoustics or SOFA was created to provide a solution to this problem. It is a format definition to unify all the previous different ways of storing any kind of acoustics data. At the moment of this project they have defined some basis for the format and some recommendations to store HRTFs. It is actually under development, so several changes could come. The SOFA[1] file format uses a numeric container called netCDF[2], specifically the Enhaced data model described in netCDF 4 that is based on HDF5[3]. The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering algorithms. The SSR was developed at the Quality and Usability Lab at TU Berlin and is now further developed at the Institut für Nachrichtentechnik at Universität Rostock [4]. This project is intended to be an introduction to the use of SOFA files, providing a C++ API to manipulate them and adapt the binaural renderer of the SSR for working with the SOFA format. RESUMEN. El SSR (SoundScape Renderer) es un programa que está siendo desarrollado actualmente por la Universität Rostock, y previamente por la Technische Universität Berlin. El SSR es una herramienta diseñada para la reproducción y renderización de audio 2D en tiempo real. Para ello utiliza diversos algoritmos, algunos orientados a sistemas formados por arrays de altavoces en diferentes configuraciones y otros algoritmos diseñados para cascos. El principal objetivo de este proyecto es dotar al SSR de la capacidad de renderizar sonidos binaurales en 3D. Este proyecto está centrado en el binaural renderer del SSR. Este algoritmo se basa en el uso de HRTFs (Head Related Transfer Function). Las HRTFs representan la función de transferencia del sistema formado por la cabeza y el torso del oyente. Esta función es medida desde diferentes ángulos. Con estos datos el binaural renderer puede generar audio en tiempo real simulando la posición de diferentes fuentes. Para poder incluir una base de datos con HRTFs en 3D se ha hecho uso del nuevo formato SOFA (Spatially Oriented Format for Acoustics). Este nuevo formato se encuentra en una fase bastante temprana de su desarrollo. Está pensado para servir como formato estándar para almacenar HRTFs y cualquier otro tipo de medidas acústicas, ya que actualmente cada laboratorio cuenta con su propio formato de almacenamiento y esto hace bastante difícil usar varias bases de datos diferentes en un mismo proyecto. El formato SOFA hace uso del contenedor numérico netCDF, que a su vez esta basado en un contenedor más básico llamado HRTF-5. Para poder incluir el formato SOFA en el binaural renderer del SSR se ha desarrollado una API en C++ para poder crear y leer archivos SOFA con el fin de utilizar los datos contenidos en ellos dentro del SSR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper the power-frequency control of hydropower plants with long penstocks is addressed. In such configuration the effects of pressure waves cannot be neglected and therefore commonly used criteria for adjustment of PID governors would not be appropriate. A second-order Π model of the turbine-penstock based on a lumped parameter approach is considered. A correction factor is introduced in order to approximate the model frequency response to the continuous case in the frequency interval of interest. Using this model, several criteria are analysed for adjusting the PI governor of a hydropower plant operating in an isolated system. Practical criteria for adjusting the PI governor are given. The results are applied to a real case of a small island where the objective is to achieve a generation 100% renewable (wind and hydro). Frequency control is supposed to be provided exclusively by the hydropower plant. It is verified that the usual criterion for tuning the PI controller of isolated hydro plants gives poor results. However, with the new proposed adjustment, the time response is considerably improved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Open-loop operatlon of the stepping motor exploits the inherent advantages of the machine. For near optimum operation: in this mode, however, an accurate system model is required to facilitate controller design. Such a model must be comprehensive and take account of the non-linearities inherent in the system. The result is a complex formulation which can be made manageable with a computational aid. A digital simulation of a hybrid type stepping motor and its associated drive circuit is proposed. The simulation is based upon a block diagram model which includes reasonable approximations to the major non-linearities. The simulation is shown to yield accurate performance predictions. The determination of the transfer functions is based upon the consideration of the physical processes involved rather than upon direct input-outout measurements. The effects of eddy currents, saturation, hysteresis, drive circuit characteristics and non-linear torque displacement characteristics are considered and methods of determining transfer functions, which take account of these effects, are offered. The static torque displacement characteristic is considered in detail and a model is proposed which predicts static torque for any combination of phase currents and shaft position. Methods of predicting the characteristic directly from machine geometry are investigated. Drive circuit design for high efficiency operation is considered and a model of a bipolar, bilevel circuit is proposed. The transfers between stator voltage and stator current and between stator current and air gap flux are complicated by the effects of eddy currents, saturation and hysteresis. Frequency response methods, combined with average inductance measurements, are shown to yield reasonable transfer functions. The modelling procedure and subsequent digital simulation is concluded to be a powerful method of non-linear analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is an exploration of the organisation and functioning of the human visual system using the non-invasive functional imaging modality magnetoencephalography (MEG). Chapters one and two provide an introduction to the ‘human visual system and magnetoencephalographic methodologies. These chapters subsequently describe the methods by which MEG can be used to measure neuronal activity from the visual cortex. Chapter three describes the development and implementation of novel analytical tools; including beamforming based analyses, spectrographic movies and an optimisation of group imaging methods. Chapter four focuses on the use of established and contemporary analytical tools in the investigation of visual function. This is initiated with an investigation of visually evoked and induced responses; covering visual evoked potentials (VEPs) and event related synchronisation/desynchronisation (ERS/ERD). Chapter five describes the employment of novel methods in the investigation of cortical contrast response and demonstrates distinct contrast response functions in striate and extra-striate regions of visual cortex. Chapter six use synthetic aperture magnetometry (SAM) to investigate the phenomena of visual cortical gamma oscillations in response to various visual stimuli; concluding that pattern is central to its generation and that it increases in amplitude linearly as a function of stimulus contrast, consistent with results from invasive electrode studies in the macaque monkey. Chapter seven describes the use of driven visual stimuli and tuned SAM methods in a pilot study of retinotopic mapping using MEG; finding that activity in the primary visual cortex can be distinguished in four quadrants and two eccentricities of the visual field. Chapter eight is a novel implementation of the SAM beamforming method in the investigation of a subject with migraine visual aura; the method reveals desynchronisation of the alpha and gamma frequency bands in occipital and temporal regions contralateral to observed visual abnormalities. The final chapter is a summary of main conclusions and suggested further work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis a modified Canon IR optometer was used to record static and continuous responses of accommodation during sustained visual tasks. The instrument was assessed with regard to the ocular exit pupil used, its frequency response and noise levels. Experimental work concerned essentially the temporal characteristics and neurological basis of the accommodative mechanism. In the absence of visual stimuli, the accommodative system assumes a resting or tonic accommodative (TA) position, which may be modified by periods of sustained fixation. The rate of regression from a near task to TA in darkness has exhibited differences between regression rates for enunetropes (EMMs) compared with late-onset myopes (WMs). The rate of accommodative regression from a task set at 3D above TA was examined for a group of 10 EMMs and 10 LOMs for 3 conditions: saline, timolol and betaxolol. Timolol retarded the regression to TA for a sub-group of EMMs. The patterns of regression for the remaining emmetropes mirrored that for the LOMs, the drugs showing no difference in rate of regression compared with the saline condition. This provides support for the conjecture that LOMs and certain EMMs appear to be deficient in a sympathetic inhibitory component to the ciliary muscle which may attenuate adaptational changes in tonus and which leave them susceptible to the development of LOM. It is well established that the steady-state accommodative response is characterised by temporal changes in lens power having 2 dominant frequency components: a low frequency component (LFC: < 0.6Hz) and a high frequency component (HFC: 1.0-2.2Hz). This thesis investigates various aspects of these microfluctuations of accommodation.The HFC of accommodative fluctuations was shown to be present in central and peripheral lens zones, although the magnitude of the rms of accommodative microfluctuations was found to be reduced in the lens periphery. These findings concur with the proposal that the lens capsule acts as a force distributor, transmitting the tension from the zonules evenly over the whole of the lens surface.An investigation into the correlation between arterial pulse and the HFC of accommodative fluctuations showed that the peak frequency of the HFC was governed by the arterial pulse frequency. It was proposed that the microflucutations comprised a combination of neurological control (LFC) and physiological variations (HFC).The effect of timolol maleate on the steady-state accommodative response for a group of 10 emmetropes showed that timolol reduced significantly the rms of accommodative microfluctuations in treated but not untreated eyes. Consequently, the effect was considered to be locally, rather than systemically induced.The influence of the sympathetic system on within-task measurements of accommodation was examined by recording the accommodative response of 3 subjects to a sinusoidally moving target at 6 temporal frequencies from 0.05Hz to 0.5Hz for 3 drug conditions: saline, timolol and betaxolol. Timolol caused a reduced gain for frequencies below 0.3 whereas betaxolol reduced accommodative gain for all frequencies. It was proposed that the results for timolol were consistent with temporal response characteristics of sympathetic innervation of the ciliary muscle whereas the betaxolol results were thought to be a manifestation of fatigue resulting from the CNS depressant effect of the drug.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Whole body vibration (WBV) aims to mechanically activate muscles by eliciting stretch reflexes. Mechanical vibrations are usually transmitted to the patient body standing on a oscillating plate. WBV is now more and more utilized not only for fitness but also in physical therapy, rehabilitation and in sport medicine. Effects depend on intensity, direction and frequency of vibration; however, the training frequency is one of the most important factors involved. A preliminary vibratory session can be dedicated to find the best vibration frequency for each subject by varying, stepwise, the stimulation frequency and analyzing the resulting EMG activity. This study concentrates on the analysis of muscle motion in response to a vibration frequency sweep, while subjects held two different postures. The frequency of a vibrating platform was increased linearly from 10 to 60 Hz in 26 s, while platform and single muscles (Rectus Femoris, Biceps Femoris - long head and Gastrocnemius Lateralis) motions were monitored using tiny, lightweight three-axial MEMS accelerometers. Displacements were estimated integrating twice the acceleration data after gravity contribution removal. Mechanical frequency response (amplitude and phase) of the mechanical chains ending at the single muscles was characterized. Results revealed a mechanical resonant-like behavior at some muscles, very similar to a second-order system in the frequency interval explored; resonance frequencies and dumping factors depended on subject and its positioning onto the vibrating platform. Stimulation at the resonant frequency maximizes muscle lengthening, and in turn muscle spindle solicitation, which produce muscle activation. © 2009 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the dynamic covariance matrix. The contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of highly non-linear model specifications (“Causality tests and observationally equivalent representations of econometric models”, Journal of Econometrics, 1988, 39(1-2), 69–104), especially for developing tests for leverage and spillover effects in the covariance dynamics. Efficient importance sampling is used to maximize the likelihood function of RMESV-ALM, and the finite sample properties of the quasi-maximum likelihood estimator of the parameters are analysed. Using high frequency data for three US financial assets, the new model is estimated and evaluated. The forecasting performance of the new model is compared with a novel dynamic realized matrix-exponential conditional covariance model. The volatility and co-volatility spillovers are examined via the news impact curves and the impulse response functions from returns to volatility and co-volatility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heart disease is attributed as the highest cause of death in the world. Although this could be alleviated by heart transplantation, there is a chronic shortage of donor hearts and so mechanical solutions are being considered. Currently, many Ventricular Assist Devices (VADs) are being developed worldwide in an effort to increase life expectancy and quality of life for end stage heart failure patients. Current pre-clinical testing methods for VADs involve laboratory testing using Mock Circulation Loops (MCLs), and in vivo testing in animal models. The research and development of highly accurate MCLs is vital to the continuous improvement of VAD performance. The first objective of this study was to develop and validate a mathematical model of a MCL. This model could then be used in the design and construction of a variable compliance chamber to improve the performance of an existing MCL as well as form the basis for a new miniaturised MCL. An extensive review of literature was carried out on MCLs and mathematical modelling of their function. A mathematical model of a MCL was then created in the MATLAB/SIMULINK environment. This model included variable features such as resistance, fluid inertia and volumes (resulting from the pipe lengths and diameters); compliance of Windkessel chambers, atria and ventricles; density of both fluid and compressed air applied to the system; gravitational effects on vertical columns of fluid; and accurately modelled actuators controlling the ventricle contraction. This model was then validated using the physical properties and pressure and flow traces produced from a previously developed MCL. A variable compliance chamber was designed to reproduce parameters determined by the mathematical model. The function of the variability was achieved by controlling the transmural pressure across a diaphragm to alter the compliance of the system. An initial prototype was tested in a previously developed MCL, and a variable level of arterial compliance was successfully produced; however, the complete range of compliance values required for accurate physiological representation was not able to be produced with this initial design. The mathematical model was then used to design a smaller physical mock circulation loop, with the tubing sizes adjusted to produce accurate pressure and flow traces whilst having an appropriate frequency response characteristic. The development of the mathematical model greatly assisted the general design of an in vitro cardiovascular device test rig, while the variable compliance chamber allowed simple and real-time manipulation of MCL compliance to allow accurate transition between a variety of physiological conditions. The newly developed MCL produced an accurate design of a mechanical representation of the human circulatory system for in vitro cardiovascular device testing and education purposes. The continued improvement of VAD test rigs is essential if VAD design is to improve, and hence improve quality of life and life expectancy for heart failure patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the implications of the permanent/transitory decomposition of shocks for identification of structural models in the general case where the model might contain more than one permanent structural shock. It provides a simple and intuitive generalization of the influential work of Blanchard and Quah [1989. The dynamic effects of aggregate demand and supply disturbances. The American Economic Review 79, 655–673], and shows that structural equations with known permanent shocks cannot contain error correction terms, thereby freeing up the latter to be used as instruments in estimating their parameters. The approach is illustrated by a re-examination of the identification schemes used by Wickens and Motto [2001. Estimating shocks and impulse response functions. Journal of Applied Econometrics 16, 371–387], Shapiro and Watson [1988. Sources of business cycle fluctuations. NBER Macroeconomics Annual 3, 111–148], King et al. [1991. Stochastic trends and economic fluctuations. American Economic Review 81, 819–840], Gali [1992. How well does the ISLM model fit postwar US data? Quarterly Journal of Economics 107, 709–735; 1999. Technology, employment, and the business cycle: Do technology shocks explain aggregate fluctuations? American Economic Review 89, 249–271] and Fisher [2006. The dynamic effects of neutral and investment-specific technology shocks. Journal of Political Economy 114, 413–451].