939 resultados para French Polynesia
Resumo:
v.26:no.2 (1902)
Resumo:
Manganese nodules were investigated during the Downwind Expedition, a part of the International Geophysical Year programme of the Scripps Institution of Oceanography of the University of California. Attempts were made to collect bottom photographs, cores and dredge hauls in the same areas, to measure the distribution at the surface and in depth, and to obtain large samples for physical and chemical analysis.
Resumo:
Mode of access: Internet.
Resumo:
Adult bucephalid trematodes (Digenea) generally only occur in piscivorous fish. Within labrid fishes they are very rare, however, we have found them in labrid cleaner fish that feed on the ectoparasites of fish. We surveyed 969 labrid fishes from the tropical Pacific and found bucephalids only in cleaners (Lahroides dimidiatus, L. bicolor, and Bodianus axillaris) and none in piscivores. The prevalences of bucephalids in L. dimidiatus at Lizard Island, Heron Island, Orpheus Island (all on the Great Barrier Reef), New Caledonia, and Moorea (French Polynesia) were 51, 47, 67, 56, and 67%, respectively. All of the L. bicolor examined from Moorea were infected. Bucephalids were highly prevalent in all size classes of L. dimidiatus from Lizard Island. Bucephalids were found in a 1.6-cm long juvenile L. dimidiatus, in which, piscivory is highly unlikely. We examined the literature on the worldwide bucephalid fauna in labrids and all hosts were found to be cleaners (Symphodus tinca, S. mediterraneus, L. dimidiatus, L. bicolor, and Bodianus axillaris) except Notolabrus parilus, whose ecology is unknown. We suggest that cleaners eat bucephalid metacercariae directly from the exterior surface of client fish during cleaning interactions. This is the first evidence of digeneans in the diet of L. dimidiatus, and the first study to show this novel form of parasite transmission where infective stages are eaten as a result of cleaning behaviour. Cleaning-mediated parasite transmission may result in behavioural modification of second intermediate hosts because clients and parasites both benefit from transmission. If the infection is costly to cleaners and acquired during cheating behaviour, then this parasite might regulate mutualism. Alternatively, if infective stages are targeted, infection by these bucephalids may be a negative consequence of an honest foraging strategy.
Resumo:
A new species Gorgocephalus yaaji is described in the intestine of Kyphosus vaigiensis from the waters off Lizard Island, Queensland, Australia. It differs from Gorgocephalus kyphosi by its broader body shape, the extension of the vitellarium into the forebody, a relatively longer forebody, cirrus-sac and post-caecal region, and a shorter distance between the ventral sucker and the ovary. It differs from Gorgocephalus manteri in its size, its tandem testes, and the ratios of width, ventral sucker to ovary distance and ovary to testes distance to body-length. Gorgocephalus kyphosi is reported in the pyloric caeca of K. vaigiensis from waters off Moorea, French Polynesia, and Lizard Island, Queensland, Australia. Measurements and an illustration are given of the latter species.
Resumo:
This Study describes the community of all metazoan parasites from 14 individuals of thicklip wrasse, Hemigymnus melapterus, from Lizard Island, Australia. All fish were parasitized, and 4,649 parasite individuals were found. Twenty-six parasite species were identified although only 6 species were abundant and prevalent: gnathiid isopods, the copepod Hatschekia hemigymni, the digenean Callohelmis pichelinae, and 3 morphotypes of tetraphyllidean cestode larvae. We analyzed whether the body size and microhabitat of the parasites and size of the host affected understanding of the structure of the parasite community. We related the abundance, biovolume, and density of parasites with the host body size and analyzed the abundances and volumetric densities of some parasite species within microhabitats. Although the 2 most abundant species comprised 75% of all parasite individuals, 4 species, each in similar proportion, comprised 85% of the total biovolume. Although larger host individuals had higher richness, abundance, and biovolume of parasites than smaller individuals, overall parasite volumetric density actually decreased with the host body size. Moreover. parasites exhibited abundances and densities significantly different among microhabitats; some parasite species depended on the area available, whereas others selected a specific microhabitat. Parasite and habitat size exhibited interesting relationships that should be considered more frequently. Considerations of these parameters improve understanding of parasite community structure and how the parasites use their habitats.
Resumo:
The Quadrifoliovariinae is revised and three new species of Quadrifoliovarium Yamaguit, 1965 from acanthurid fishes of the genus Naso from waters of the Indo-Pacific are described: Q, maceria n. sp. from N. tonganus, N. annulatus, N. fageni and N. brevirostris; Q. simplex n. sp. from N. tonganus and N. quannulatus; and Q. quattuordecim n. sp. from N. tonganus. Amendments are made to the characterisation of the Quadrifoliovariinae, Quadrifoliovarium, Bilacinia Manter, 1969 and Unilacinia Manter, 1969 in light of observations on type and new material. A molecular phylogeny based on ITS2 and 28S regions of the ribosomal DNA is proposed. The phylogeny suggests that U. asymmetrica is the most basal taxon and Q. simplex n. sp. and Q. quattuordecim n. sp. the most derived. Evolution of morphological traits within the Quadrifoliovariinae are discussed in light of the molecular phylogeny. Molecular sequences of the ITS2 rDNA were identical between specimens of Q. pritchardae collected off Exmouth (Indian Ocean), Heron Island and Lizard Island (Western Pacific) and Moorea (far Eastern Indo-Pacific), indicating a broad Indo-Pacific distribution. All members of the subfamily are recorded only from the acanthurid genus Naso, with the exception of B. lobatum (Yamaguti, 1970), which has been recorded from a pomacanthid. The restricted host range of the group is discussed in the light of the phylogeny of the host genus Naso.