879 resultados para Fractional powers
Resumo:
Under the International Health Regulations 2005 Australia is obliged to develop a domestic framework designed to equip it to respond to public health emergencies. The legislative arrangements for the declaration of a public health emergency in Australia are complex, vary across state jurisdictions and intersect with other emergency powers. The task of harmonising laws and other arrangements within a federal system poses both challenges and opportunities for flexibility and choice. This article argues that Australia's current multi-strand and multi-level response provides a coordinated framework which also accommodates desirable levels of flexibility and choice.
Resumo:
Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)bf(A)b, where A A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.
Resumo:
Many students of calculus are not aware that the calculus they have learned is a special case (integer order) of fractional calculus. Fractional calculus is the study of arbitrary order derivatives and integrals and their applications. The article begins by stating a naive question from a student in a paper by Larson (1974) and establishes, for polynomials and exponential functions, that they can be deformed into their derivative using the μ-th order fractional derivatives for 0<μ<1. Through the power of Excel we illustrate the continuous deformations dynamically through conditional formatting. Some applications are discussed and a connection made to mathematics education.