985 resultados para Fractional Diffusion
Resumo:
Heritability of brain anatomical connectivity has been studied with diffusion-weighted imaging (DWI) mainly by modeling each voxel's diffusion pattern as a tensor (e.g., to compute fractional anisotropy), but this method cannot accurately represent the many crossing connections present in the brain. We hypothesized that different brain networks (i.e., their component fibers) might have different heritability and we investigated brain connectivity using High Angular Resolution Diffusion Imaging (HARDI) in a cohort of twins comprising 328 subjects that included 70 pairs of monozygotic and 91 pairs of dizygotic twins. Water diffusion was modeled in each voxel with a Fiber Orientation Distribution (FOD) function to study heritability for multiple fiber orientations in each voxel. Precision was estimated in a test-retest experiment on a sub-cohort of 39 subjects. This was taken into account when computing heritability of FOD peaks using an ACE model on the monozygotic and dizygotic twins. Our results confirmed the overall heritability of the major white matter tracts but also identified differences in heritability between connectivity networks. Inter-hemispheric connections tended to be more heritable than intra-hemispheric and cortico-spinal connections. The highly heritable tracts were found to connect particular cortical regions, such as medial frontal cortices, postcentral, paracentral gyri, and the right hippocampus.
Resumo:
A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6 ≤ N ≤ 94) that optimized a spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. With High-angular resolution diffusion imaging (HARDI) and the tensor distribution function (TDF), one can reconstruct multiple underlying fibers per voxel and their individual anisotropy measures by representing the diffusion profile as a probabilistic mixture of tensors. We found that FA, when compared with TDF-derived anisotropy measures, correlates poorly with individual fiber anisotropy, and may sub-optimally detect disease processes that affect myelination. By contrast, mean diffusivity (MD) as defined in standard DTI appears to be more accurate. Overall, we argue that novel measures derived from the TDF approach may yield more sensitive and accurate information than DTI-derived measures.
Resumo:
Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.
Resumo:
The rheological properties of polymer melts and other complex macromolecular fluids are often successfully modeled by phenomenological constitutive equations containing fractional differential operators. We suggest a molecular basis for such fractional equations in terms of the generalized Langevin equation (GLE) that underlies the renormalized Rouse model developed by Schweizer [J. Chem. Phys. 91, 5802 (1989)]. The GLE describes the dynamics of the segments of a tagged chain under the action of random forces originating in the fast fluctuations of the surrounding polymer matrix. By representing these random forces as fractional Gaussian noise, and transforming the GLE into an equivalent diffusion equation for the density of the tagged chain segments, we obtain an analytical expression for the dynamic shear relaxation modulus G(t), which we then show decays as a power law in time. This power-law relaxation is the root of fractional viscoelastic behavior.
Resumo:
A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
While the Stokes-Einstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.5x10(-5) cm(2)/s for water in n-pentane to 1.15x10(-5) cm(2)/s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.75x10(-5) cm(2)/s in n-methanol to 0.364x10(-5) cm(2)/s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a method for modeling diffusion caused by non-smooth boundary surfaces in simulations of room acoustics using finite difference time domain (FDTD) technique is investigated. The proposed approach adopts the well-known theory of phase grating diffusers to efficiently model sound scattering from rough surfaces. The variation of diffuser well-depths is attained by nesting allpass filters within the reflection filters from which the digital impedance filters used in the boundary implementation are obtained. The presented technique is appropriate for modeling diffusion at high frequencies caused by small surface roughness and generally diffusers that have narrow wells and infinitely thin separators. The diffusion coefficient was measured with numerical experiments for a range of fractional Brownian diffusers.
Resumo:
Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.
Resumo:
Diffusion tensor imaging (DTI) studies have identified changes in white matter tracts in schizophrenia patients and those at high risk of transition. Schizotypal samples represent a group on the schizophrenia continuum that share some aetiological risk factors but without the confounds of illness. The aim of the current study was to compare tract microstructural coherence as measured by
fractional anisotropy (FA) between 12 psychometrically defined schizotypes and controls. We investigated bilaterally the uncinate and arcuate fasciculi (UF and AF) via a probabilistic tractography algorithm (PICo), with FA values compared between groups. Partial correlations were also examined between measures of subclinical hallucinatory/delusional experiences and FA values. High schizotypes
were found to have significantly higher FA values in bilateral UF only, but failed to reach significance in each hemisphere. In the whole sample there was a positive correlation between increasing FA values and measures of hallucinatory experience in the right AF. These findings suggest subtle changes in microstructural coherence are present in schizotypes. Correlations between mild hallucinatory experience and increasing FA values could indicate increasing coherence could be associated with symptom formation.
Resumo:
This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the phenomena resembles those of fractional order systems, namely those with a fast initial transient followed by long and slow tails. The experimental measurements are best fitted with the Harris model revealing a power law behavior.
Resumo:
The Maxwell equations play a fundamental role in the electromagnetic theory and lead to models useful in physics and engineering. This formalism involves integer-order differential calculus, but the electromagnetic diffusion points towards the adoption of a fractional calculus approach. This study addresses the skin effect and develops a new method for implementing fractional-order inductive elements. Two genetic algorithms are adopted, one for the system numerical evaluation and another for the parameter identification, both with good results.
Resumo:
The current study aims to assess the applicability of direct or indirect normalization for the analysis of fractional anisotropy (FA) maps in the context of diffusion-weighted images (DWIs) contaminated by ghosting artifacts. We found that FA maps acquired by direct normalization showed generally higher anisotropy than indirect normalization, and the disparities were aggravated by the presence of ghosting artifacts in DWIs. The voxel-wise statistical comparisons demonstrated that indirect normalization reduced the influence of artifacts and enhanced the sensitivity of detecting anisotropy differences between groups. This suggested that images contaminated with ghosting artifacts can be sensibly analyzed using indirect normalization.
Resumo:
An analysis method for diffusion tensor (DT) magnetic resonance imaging data is described, which, contrary to the standard method (multivariate fitting), does not require a specific functional model for diffusion-weighted (DW) signals. The method uses principal component analysis (PCA) under the assumption of a single fibre per pixel. PCA and the standard method were compared using simulations and human brain data. The two methods were equivalent in determining fibre orientation. PCA-derived fractional anisotropy and DT relative anisotropy had similar signal-to-noise ratio (SNR) and dependence on fibre shape. PCA-derived mean diffusivity had similar SNR to the respective DT scalar, and it depended on fibre anisotropy. Appropriate scaling of the PCA measures resulted in very good agreement between PCA and DT maps. In conclusion, the assumption of a specific functional model for DW signals is not necessary for characterization of anisotropic diffusion in a single fibre.