955 resultados para Formation and seed viability
Resumo:
Due to the adverse effects of the cholesterol oxidation products for the human health, the search of the occurrence and the quantification of these compounds in foods are considered of great importance. In this paper the effect of grilling in hake and sardine on cholesterol oxides formation and fatty acids alterations was investigated. The main fatty acids determined in both fishes were docosahexaenoic (DHA), oleic, eicosapentaenoic (EPA) and palmitoleic. The total lipids, fatty acids and cholesterol contents were decreased significantly (p < 0.02) after thermal treatment, with simultaneous increase of the cholesterol oxides contents. The cholesterol oxides determined in both species in the present study were: 19-hydroxycholesterol, 24(S)-hydroxycholesterol, 22(S) hydroxycholesterol, 25-hydroxycholesterol, 25(R)-hydroxycholesterol and 7-ketocolesterol. Besides the presence of the cholesterol oxides in raw fishes, there were a greater number of products resulting from the oxidation of cholesterol side chain, a fact rarely observed in foods.
Resumo:
Papaya is among the currently most important tropical fruits grown in Brazil and in the world. The fruit is mainly consumed fresh although it offers many industrial products. The processing of this fruit, as well as its fresh consumption, results in large amounts of waste, such as peels and seeds. Papaya consumption is one of the causes of significant loss of food value; therefore, new aspects on the use of its waste as by-products, or in the production of food additives, or even the incorporation of its flour in food have aroused great interest because these are products of high nutritional value, and their use may be economically viable. The objective of this study was to produce and characterize peel and seed flours from two papaya cultivars (Havai and Calimosa) for their chemical constituents focusing on possible use in foods. The proximate and mineral composition, titratable acidity, soluble solids, pH, contents of vitamin C, and phenolic compounds were determined. According to the results obtained, the papaya peel and seed flours had high contents of protein and fiber and therefore can be used as alternative sources of nutrients and can also be added in foods avoiding waste and adding value to the fruit.
Resumo:
The experiment was carried out in pots in a glasshouse, with one plant per pot and nine repetitions per treatment. The treatments consisted of free or restricted leaves, submited to 90-100% or 60-70% soil field capacity (FC). Only independent effects of water availability or leaf movement were observed on yield components. Plants under well-watered conditions and with freely orienting leaves were taller, and had a larger number of ramifications. The greater development favored the setting of a higher number of inflorescences per plant in these treatments. This behavior resulted in a high number of flowers, green and mature legumes per plant, thus resulting in high seed production which was the most evident response to water availability. Although individual seed weight was higher in the water stress treatment, total seed production was higher for well-watered plants, with no statistically significant effect of leaf movements.
Resumo:
The aim of this study was to evaluate changes in canola yield components and seed physiological quality in response to different sowing densities. The study was made in a greenhouse at the REIPESOL Company Technological Center, Madrid - Spain, with the commercial "Toccata" hybrid variety. The initial sowing density was 360,000 plants/ha and the plant population was later thinned down to include treatments of 250 and 180 thousand plants/ha. Harvested seeds were sent to the Seed Technology Center Laboratory (CATES) at the Madrid Polytechnic University (UPM) to evaluate changes in plant architecture and yield components, as well as the seed physiological quality of different plant parts. Results demonstrated that canola plants showed changes in morphology and yield components in response to different sowing densities. The population of 250,000 plants/ha showed the best seed yield demonstrating that maximum yield is directly related to a correct sowing density. The number of pods/plant was the most important component for increased seed yield/plant and seed yield/area. The spatial distribution of canola seeds in the plant and canola sowing density did not affect seed physiological quality.
Resumo:
The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.
Resumo:
The following thesis provides an empirical case study in which a group of 6 first generation female Afghan Canadian youth is studied to determine their identity negotiation and development processes in everyday experiences. This process is investigated across different contexts of home, school, and the community. In terms of schooling experiences, 2 participants each are selected representing public, Islamic, and Catholic schools in Southern Ontario. This study employs feminist research methods and is analyzed through a convergence of critical race theory (critical race feminism), youth development theory, and feminist theory. Participant experiences reveal issues of racism, discrimination, and bias within schooling (public, Catholic) systems. Within these contexts, participants suppress their identities or are exposed to negative experiences based on their ethnic or religious identification. Students in Islamic schools experience support for a more positive ethnic and religious identity. Home and community provided nurturing contexts where participants are able to reaffirm and develop a positive overall identity.
Resumo:
Wine produced using an appassimento-type process represents a new and exciting innovation for the Ontario wine industry. This process involves drying grapes that have already been picked from the vine, which increases the sugar content due to dehydration and induces a variety of changes both within and on the surface of the grapes. Increasing sugar contents in musts subject wine yeast to conditions of high osmolarity during alcoholic fermentations. Under these conditions, yeast growth can be inhibited, target alcohol levels may not be attained and metabolic by-products of the hyperosmotic stress response, including glycerol and acetic acid, may impact wine composition. The further metabolism of acetic acid to acetylCoA by yeast facilitates the synthesis of ethyl acetate, a volatile compound that can also impact wine quality if present in sufficiently high concentrations. The first objective of this project was to understand the effect of yeast strain and sugar concentration on fermentation kinetics and metabolite formation, notably acetic acid and ethyl acetate, during fermentation in appassimento-type must. Our working hypotheses were that (1) the natural isolate Saccharomyces bayanus would produce less acetic acid and ethyl acetate compared to Saccharomyces cerevisiae strain EC-1118 fermenting the high and low sugar juices; (2) the wine produced using the appassimento process would contain higher levels of acetic acid and lower levels of ethyl acetate compared to table wine; (3) and the strains would be similar in the kinetic behavior of their fermentation performances in the high sugar must. This study determined that the S. bayanus strain produced significantly less acetic acid and ethyl acetate in the appassimento wine and table wine fermentations. Differences in acetic acid and ethyl acetate production were also observed within strains fermenting the two sugar conditions. Acetic acid production was higher in table wine fermented by S. bayanus as no acetic acid was produced in appassimento-style wine, and 1.4-times higher in appassimento wine fermented by EC-1118 over that found in table wine. Ethyl acetate production was 27.6-times higher in table wine fermented by S. bayanus, and 5.2-times higher by EC-1118, compared to that in appassimento wine. Sugar utilization and ethanol production were comparable between strains as no significant differences were determined. The second objective of this project was to bring a method in-house for measuring the concentration of pyridine nucleotides, NAD+, NADP+, NADH and NADPH, in yeast cytosolic extract. Development of this method is of applicative interest for our lab group as it will enable the redox balance of the NAD+/ NADH and NADP+/ NADPH systems to be assessed during high sugar fermentations to determine their respective roles as metabolic triggers for acetic acid production. Two methods were evaluated in this study including a UV-endpoint method using a set of enzymatic assay protocols outlined in Bergmeyer (1974) and a colorimetric enzyme cycling method developed by Sigma-Aldrich® using commercial kits. The former was determined to be limited by its low sensitivity following application to yeast extract and subsequent coenzyme analyses, while the latter was shown to exhibit greater sensitivity. The results obtained from the kits indicated high linearity, accuracy and precision of the analytical method for measuring NADH and NADPH, and that it was sensitive enough to measure the low coenzyme concentrations present in yeast extract samples. NADtotal and NADPtotal concentrations were determined to be above the lower limit of quantification and within the range of the respective calibration curves, making this method suitable for our research purposes.
Resumo:
The active metabolite of vitamin A, retinoic acid (RA), is involved in memory formation and hippocampal plasticity in vertebrates. A similar role for retinoid signaling in learning and memory formation has not previously been examined in an invertebrate species. However, the conservation of retinoid signaling between vertebrates and invertebrates is supported by the presence of retinoid signaling machinery in invertebrates. For example, in the mollusc Lymnaea stagnalis the metabolic enzymes and retinoid receptors have been cloned from the CNS. In this study I demonstrated that impairing retinoid signaling in Lymnaea by either inhibiting RALDH activity or using retinoid receptor antagonists, prevented the formation of long-term memory (LTM). However, learning and intermediate-term memory were not affected. An additional finding was that exposure to constant darkness (due to the light-sensitive nature of RA) itself enhanced memory formation. This memory-promoting effect of darkness was sufficient to overcome the inhibitory effects of RALDH inhibition, but not that of a retinoid receptor antagonist, suggesting that environmental light conditions may influence retinoid signaling. Since RA also influences synaptic plasticity underlying hippocampal-dependent memory formation, I also examined whether RA would act in a trophic manner to influence synapse formation and/or synaptic transmission between invertebrate neurons. However, I found no evidence to support an effect of RA on post-tetanic potentiation of a chemical synapse. Retinoic acid did, however, reduce transmission at electrical synapses in a cell-specific manner. Overall, these studies provide the first evidence for a role of RA in the formation of implicit long-term memories in an invertebrate species and suggest that the role of retinoid signaling in memory formation has an ancient origin.
Resumo:
This paper studies the persistent effects of monetary shocks on output. Previous empirical literature documents this persistence, but standard general equilibrium models with sticky prices fail to generate output responses beyond the duration of nominal contracts. This paper constructs and estimates a general equilibrium model with price rigidities, habit formation, and costly capital adjustment. The model is estimated via Maximum Likelihood using US data on output, the real money stock, and the nominal interest rate. Econometric results suggest that habit formation and adjustment costs to capital play an important role in explaining the output effects of monetary policy. In particular, impulse response analysis indicates that the model generates persistent, hump-shaped output responses to monetary shocks.
Resumo:
BACKGROUND: The role of ss-catenin signaling in mesodermal lineage formation and differentiation has been elusive. METHODOLOGY: To define the role of ss-catenin signaling in these processes, we used a Dermo1(Twist2)(Cre/+) line to target a floxed beta-catenin allele, throughout the embryonic mesenchyme. Strikingly, the Dermo1(Cre/+); beta-catenin(f/-) conditional Knock Out embryos largely phenocopy Pitx1(-/-)/Pitx2(-/-) double knockout embryos, suggesting that ss-catenin signaling in the mesenchyme depends mostly on the PITX family of transcription factors. We have dissected this relationship further in the developing lungs and find that mesenchymal deletion of beta-catenin differentially affects two major mesenchymal lineages. The amplification but not differentiation of Fgf10-expressing parabronchial smooth muscle progenitor cells is drastically reduced. In the angioblast-endothelial lineage, however, only differentiation into mature endothelial cells is impaired. CONCLUSION: Taken together these findings reveal a hierarchy of gene activity involving ss-catenin and PITX, as important regulators of mesenchymal cell proliferation and differentiation.
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.
Resumo:
This thesis deals with preparing stoichiometric crystalline thin films of InSe and In2Se3 by elemental evapouration and their property investigation.In the present study three temperature( or Elemental evapouration) method is utilized for the deposition of crystalline thin films . The deposition mechanism using three temperature method deals’ with condensation of solids on heated surfaces when the critical supersaturation of the vapour phase exceeds a certain limit. The critical values of the incident flux are related to substrate temperature and the interfacial energies of the involved vapours. At a favorable presence of component atoms in the vapour phase these can react and condense onto a substrate even at a elevated temperature. In the studies conducted the most significant factor is the formation of single compositional film namely indium mono selenide in the In –se system of compounds .Further this work shows the feasibility of thin film photovoltaic junctions of the schottky barrier type
Resumo:
Due to the great versatility of the properties of polymer thin films, special interest has been taken in recent years on their preparation and electrical properties. The present thesis is entirely devoted to the study of the formation, structure and electrical properties of plasma» polymerised polyacrylonitrile (PAN) thin films. Eventhough the studies are confined to a single polymer film, the results in general are applicable to similar polar polymer films.
Resumo:
Oceans play a vital role in the global climate system. They absorb the incoming solar energy and redistribute the energy through horizontal and vertical transports. In this context it is important to investigate the variation of heat budget components during the formation of a low-pressure system. In 2007, the monsoon onset was on 28th May. A well- marked low-pressure area was formed in the eastern Arabian Sea after the onset and it further developed into a cyclone. We have analysed the heat budget components during different stages of the cyclone. The data used for the computation of heat budget components is Objectively Analyzed air-sea flux data obtained from WHOI (Woods Hole Oceanographic Institution) project. Its horizontal resolution is 1° × 1°. Over the low-pressure area, the latent heat flux was 180 Wm−2. It increased to a maximum value of 210 Wm−2 on 1st June 2007, on which the system was intensified into a cyclone (Gonu) with latent heat flux values ranging from 200 to 250 Wm−2. It sharply decreased after the passage of cyclone. The high value of latent heat flux is attributed to the latent heat release due to the cyclone by the formation of clouds. Long wave radiation flux is decreased sharply from 100 Wm−2 to 30 Wm−2 when the low-pressure system intensified into a cyclone. The decrease in long wave radiation flux is due to the presence of clouds. Net heat flux also decreases sharply to −200 Wm−2 on 1st June 2007. After the passage, the flux value increased to normal value (150 Wm−2) within one day. A sharp increase in the sensible heat flux value (20 Wm−2) is observed on 1st June 2007 and it decreased there- after. Short wave radiation flux decreased from 300 Wm−2 to 90 Wm−2 during the intensification on 1st June 2007. Over this region, short wave radiation flux sharply increased to higher value soon after the passage of the cyclone.