148 resultados para Força de molas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A aplicação das ligas com memória de forma (shape memory alloys – SMA) têm se mostrado como uma alternativa promissora no controle de vibração de máquinas e estruturas, devido principalmente aos fenômenos de memória de forma e pseudoelástico que elas apresentam. Do mesmo modo, tais ligas proporcionam grandes forças de recuperação e capacidade de amortecimento quando comparadas aos materiais tradicionais. Na literatura científica encontra-se um grande número de trabalhos que tratam da aplicação das SMA no controle de vibração em estruturas. Contudo, a aplicação desse tipo de material em máquinas rotativas ainda é um assunto pouco abordado. Nesse sentido, busca-se explorar numericamente o comportamento de atuadores baseados em ligas com memória de forma para o controle de vibração em máquinas rotativas. Na primeira análise deste trabalho um rotor tipo Jeffcott com luvas SMA em um dos mancais é utilizado. São empregadas diferentes espessuras de luvas nos estados martensítico e austenítico e as variações em termos de amplitude e frequência são então comparadas. Posteriormente, dois diferentes sistemas rotativos com dois discos e molas SMA aplicadas em um e dois mancais são estudados sob configurações variadas. As molas foram posicionadas externamente aos mancais e a temperatura de operação desses componentes é ajustada de acordo com a necessidade do controle de vibração. Além disso, foi utilizado um código computacional para a representação do comportamento termomecânico de molas SMA assim como um programa baseado no Método de Elementos Finitos (MEF) para a simulação do comportamento dinâmico dos rotores. Os resultados das análises numéricas demonstram que as SMA são eficientes no controle de vibração de sistemas rotativos devido obterem-se reduções significativas das amplitudes de deslocamento, modificações nas velocidades críticas, supressão de movimentos indesejáveis e controle das órbitas de precessão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work intends to perform the dimensioning of the Guaratinguetá’s Engineering College Baja SAE vehicle suspension system. To do so, concepts of suspension systems, human comfort limits to vibrations and automotive models for suspension vibration analyses are reviewed. On the development of this work descriptions of considerations specific for the vehicle object of this work are made as well as descriptions of the experiment made to determine the stiffness of the tire used. These concepts are applied through a computational routine that allows the dimensioning of springs and shock absorbers of both front and rear axles of a vehicle in a way to respect all the criteria showed during this work and visualize the system’s behavior when excited on different frequencies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the process of manufacture of wire drawn steel bars 9254, from rolled wire rod. These bars are used in the automotive industry for the manufacture of coil springs, which make up the system damping of several vehicles. The wire drawing process consists of the steps of pre-straightening, shot peening, drawing, cutting and polishing. The study aims to search for the configuration of process variables, which present the best result with respect to bending. To this were maintained settings prestraightening and mechanical stripping and varied angles and stringer polish being studied to replace the spinneret with a working angle, for a string with two working angles. To assist in the analysis of the results was the tool used DOE Software Minitab, which assesses the variation in results according to each parameter and the interaction parameters. It was thus possible to determine the best condition for wire drawing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass reduction coupled with the mechanical performance in service has been the goal of many projects related to the transport area, considering the advantages that mass reduction can bring. However, make a simple material substitution without design a new geometry to corroborate for the best component performance, often makes the replacement unviable. In this study, it was investigated the advantages of replacing the prototype BAJA SAE front suspension lower arm of Equipe Piratas do Vale de BAJA SAE - Universidade Paulista, Campus Guaratinguetá, actually produced with steel, for a new component made of carbon fiber composite. The new geometry has been developed to provide the best possible performance for this component and your easy manufacturing. The study was done using the 3D modeling tools and computer simulations via finite element method. The first stage of this work consisted on calculation of the estimated maximum contact force tire / soil in a prototype landing after jump at one meter high, drop test in the laboratory with the current vehicle, current front suspension lower arm 3D modeling, finite element simulation and analysis of critical regions. After all current component analysis, a new geometry for the part in study was designed and simulated in order to reduce the component mass and provide a technological innovation using composite materials. With this work it was possible to obtain a theoretical component mass reduction of 25,15% maintaining the mechanical strength necessary for the appropriated component performance when incited

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the frame deformations on a formula SAE vehicle in steady-state cornering and its influence on the lateral load transfers and, consequently, on the tires normal loads due to the applied lateral load. For a vehicle with a perfect rigid frame, the vehicle mass, the position of the center of gravity and the suspensions are the only factors responsible for the load distribution between the tires. When the frame deformations are no longer negligible, the frame deformations affect the loaddistribution between the tires. The frame flexibility turns it able to behave as an additional set of springs to the suspension system, thus changing the behavior of the set. This paper describes howit happens and suggests ways to minimize this phenomenon

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia de Produção - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for mechanical components validation methods, employed in product development sector, becomes more avid for less expensive solutions. As a result, programs that can simulate forces acting on a given part through finite element method are gaining more space in the market, once this process consumes less capital when compared to currently-employed empirical validation. This article shows the simulation of an off-road prototype suspension through such technique, using ground excitation history coming from field measurements and also by making use of a specific tool for obtaining dynamic loads from the model in question. The results shown at the end is key for future enhancements aiming mass reduction, for example, that may be executed on the prototype suspension system discussed here

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for mechanical components validation methods, employed in product development sector, becomes more avid for less expensive solutions. As a result, programs that can simulate forces acting on a given part through finite element method are gaining more space in the market, once this process consumes less capital when compared to currently-employed empirical validation. This article shows the simulation of an off-road prototype suspension through such technique, using ground excitation history coming from field measurements and also by making use of a specific tool for obtaining dynamic loads from the model in question. The results shown at the end is key for future enhancements aiming mass reduction, for example, that may be executed on the prototype suspension system discussed here