920 resultados para Food web


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aquatic ecosystems are dynamic and depend on various interdependent and inter-related factors that are vital for their existence and in maintaining the ecological balance. Various anthropogenic activities have impaired ecological conditions in many ecosystems. This monograph gives an account of the essentials in limnology, which helps in understanding the nature and extent of the problems and also provides an insight into the use of Geographic Information System as an effective tool for resource inventorying, monitoring and management. The monograph consists of four chapters, and the first one gives an overall view of the inland aquatic bodies as complex ecological systems. It begins with the formation of lakes, and the various physical, chemical and biological factors that determine these ecosystems. The physical factors covered include morphometry, density, light, etc., and the lake chemistry determined by various anions and cations are discussed in detail. The biological parameters include phytoplankton, zooplankton, waterfowl and fish communities that play an important role in freshwater biodiversity, and are presented with diagrams for easy understanding. The monograph gives an in depth view of the lake zones, productivity, and seasonal changes in the lake community with various energy relationships. The concept of food chain and food web in an aquatic ecosystem is also presented with illustrations. Lastly, the various anthropogenic activities that have deteriorated the quality of water are listed with the restoration strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction [pdf, 0.17 MB] Warren S. Wooster [pdf, 0.12 MB] PICES - the first decade, and beyond Paul H. LeBlond [pdf, 0.03 MB] The Physical Oceanography and Climate Committee: The first decade D.E. Harrison and Neville Smith [pdf, 0.04 MB] Ocean observing systems and prediction - the next ten years Tsutomu Ikeda and Patricia A. Wheeler [pdf, 0.85 MB] Ocean impacts from the bottom of the food web to the top: Biological Oceanography Committee (BIO) retrospective Timothy R. Parsons [pdf, 0.2 MB] Future needs for biological oceanographic studies in the Pacific Ocean Douglas E. Hay, Richard J. Beamish, George W. Boehlert, Vladimir I. Radchenko, Qi-Sheng Tang, Tokio Wada, Daniel W. Ware and Chang-Ik Zhang [pdf, 0.2 MB] Ten years FIS in PICES: An introspective, retrospective, critical and constructive review of fishery science in PICES Richard F. Addison, John E. Stein and Alexander V. Tkalin [pdf, 0.12 MB] Marine Environmental Committee in review Robie W. Macdonald, Brian Morton, Richard F. Addison and Sophia C. Johannessen [pdf, 1.89 MB] Marine environmental contaminant issues in the North Pacific: What are the dangers and how do we identify them? R. Ian Perry, Anne B. Hollowed and Takashige Sugimoto [pdf, 0.36 MB] The PICES Climate Change and Carrying Capacity Program: Why, how, and what next? List of acronyms [pdf, 0.07 MB] (Document contains 108 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Channel Islands—sometimes called the Galapagos of North America—are known for their great beauty, rich biodiversity, cultural heritage, and recreational opportunities. In 1980, in recognition of the islands’ importance, the United States Congress established a national park encompassing 5 of California’s Channel Islands (Santa Barbara, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands) and waters within 1 nautical mile of the islands. In the same year, Congress declared a national marine sanctuary around each of these islands, including waters up to 6 nautical miles offshore. Approximately 60,000 people visit the Channel Islands each year for aquatic recreation such as fishing, sailing, kayaking, wildlife watching, surfing, and diving. Another 30,000 people visit the islands for hiking, camping, and sightseeing. Dozens of commercial fishing boats based in Santa Barbara, Ventura, Oxnard, and other ports go to the Channel Islands to catch squid, spiny lobster, sea urchin, rockfish, crab, sheephead, flatfish, and sea cucumber, among other species. In the past few decades, advances in fishing technology and the rising number of fishermen, in conjunction with changing ocean conditions and diseases, have contributed to declines in some marine fishes and invertebrates at the Channel Islands. In 1998, citizens from Santa Barbara and Ventura proposed establishment of no-take marine reserves at the Channel Islands, beginning a 4-year process of public meetings, discussions, and scientific analyses. In 2003, the California Fish and Game Commission designated a network of marine protected areas (MPAs) in state waters around the northern Channel Islands. In 2006 and 2007, the National Oceanic and Atmospheric Administration (NOAA) extended the MPAs into the national marine sanctuary’s deeper, federal waters. To determine if the MPAs are protecting marine species and habitats, scientists are monitoring ecological changes. They are studying changes in habitats; abundance and size of species of interest; the ocean food web and ecosystem; and movement of fish and invertebrates from MPAs to surrounding waters. Additionally, scientists are monitoring human activities such as commercial and recreational fisheries, and compliance with MPA regulations. This booklet describes some results from the first 5 years of monitoring the Channel Islands MPAs. Although 5 years is not long enough to determine if the MPAs will accomplish all of their goals, this booklet offers a glimpse of the changes that are beginning to take place and illustrates the types of information that will eventually be used to assess the MPAs’ effectiveness. (PDF contains 24 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent emphasis on ecosystem approaches to fisheries management renews interest in, and the need for, trophic information about fish communities. A program was started in 1980 at the National Marine Fisheries Service Galveston Laboratory to develop a trophic database for continental shelf fishes. Collections were made during 1982-1983 that were processed but never published, yet the data remain valid today for historical purposes and for delimiting food web components within ecosystem assessments. I examined spring, summer, and fall foods in offshore populations of nine common species of trawl-susceptible fishes, with particular reference to predation on commercial penaeid shrimps (Farfantepenaeus and Litopenaeus). Diets were evaluated with the Index of Relative Importance (IRI) which combines the occurrence, number, and weight of each food item. Bank sea bass (Centropristis ocyurus) and bighead searobin (Prionotus tribulus) primarily consumed crabs, more so by larger than smaller fish. Inshore lizardfish (Synodus foetens) was almost entirely piscivorous. Ocellated flounder (Ancylopsetta ommata) consumed fishes, crabs, and stomatopods. Dwarf sand perch (Diplectrum bivittatum), blackwing searobin (Prionotus rubio), rock sea bass (Centropristis philadelphica), southern kingfish (Menticirrhus americanus), and red snapper (Lutjanus campechanus) fed mainly on shrimps. Most fish diets varied with respect to size (age), time of day, area sampled, depth, or season. Rimapenaeus and Sicyonia were the most frequently identified shrimp genera - only five Farfantepenaeus and no Litopenaeus were identified in almost 4,300 fish stomachs. I also examined gonadal development and documented fish length-weight relationships. Ripe gonads were most frequently found during summer in dwarf sand perch, during fall in ocellated flounder and bighead searobin, and during spring for other species, except no ripe red snapper or bank sea bass were collected. Rock sea bass was found to be a protogynous hermaphrodite, while dwarf sand perch is a synchronous hermaphrodite. Only ocellated flounder and southern kingfish exhibited sex-related differences in length-weight relationships. (PDF contains 40 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past five years, a biogeographic characterization of Tortugas Ecological Reserve(TER) has been carried out to measure the post-implementation effects of TER as a refuge for exploited species. Our results demonstrate that there is substantial microalgal biomass at depths between 10 and 30 m in the soft sediments at the coral reef interface, and that this community may play an important role in the food web supporting reef organisms. In addition, preliminary stable isotope data, in conjunction with prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be an important source of the primary production ultimately fueling fish production throughout TER. The majority of the fish analyzed so far have exhibited a C isotope signature consistent with a food web which relies heavily on benthic primary production. Fish counts indicate a marked increase in the abundance of large fish (>20 cm) within the Reserve relative to the Out and Park strata, across years. Faunal collections from open and protected soft bottom habitat near the northern boundary of Tortugas North strongly suggest that relaxation of trawling pressure has increased benthic biomass and diversity in this area of TER. These data, employing an integrated Before - After Control Impact (BACI) design at multiple spatial scales, will allow us to continue to document and quantify the post-implementation effects of TER. (PDF contains 58 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A literature review was conducted to locate information on the flow of energy from primary producers to the fishery stocks of the Puerto Rican-Virgin Islands insular shelf. This report uses site-specific information to describe the major ecological subsystems, or habitats, of the region, to identify the more common species and the subsystems in which they occur, to quantify productivity and biomass, and to outline trophic relationships. Discussions on each topic and subsystem vary in substance and detail, being limited by the availability and accessibility of information. (PDF contains 189 pages) Seven distinct subsystems are described: mangrove estuary, seagrass bed, coral reef, algal plain, sand/mud bottom, shelf break, and overlying pelagic. Over 50 tables provide lists of species found in each habitat on various surveys dating back to 1956. Estimates of density, relative abundance, and productivity are provided when possible. We evaluated whether sufficient information exists to support an analysis of the energy basis of fishery production in the area, beginning with the design and development of an ecosystem model. Data needs in three categories - species lists, biomass, and trophic relations - were examined for each subsystem and for each of three species groups - primary producers, invertebrates, and fish. We concluded that adequate data, sufficient for modeling purposes, are available in 16 (25%) of 64 categories; limited data, those requiring greater extrapolation, are available in 35 (55%) categories; and no data are available in 13 (20%) categories. The best-studied subsystems are seagrass beds and coral reefs, with at least limited data in all categories. Invertebrates, the intermediate link in the food web between primary producers and fishes, are the least quantified group in the region. Primary production and fishes, however, are relatively well-studied, providing sufficient data to support an ecosystem-level analysis and to initiate a modeling effort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the introduction of Common carp Cyprinus carpio in Oyo State (Nigeria) from Israel in 1964, various local breeding methods have been employed in carp rearing to improve the survival rate at all stages of development during breeding. The physico-chemical parameters of the ponds which were simultaneously investigated for carp rearing in this study includes temperature (t), dissolved oxygen (DO) and hydrogen-ion concentration (pH). However, high rates of water displacement in the breeding ponds were unfavourable to the development of zooplankton which play important role in the food web of C. carpio. The survival rates of 15.88-69.50% and 19.60-33.83% obtained for the egg-hatchling and hatchling-fingerling stages respectively were encouraging. A breeding performance of this magnitude was found to be viable, breaking even in the fourth year. However, an increase in size of this trial project would be more profitable and increase fingerling supply as well as provide employment opportunities. This study thereby provides some baseline information on some local techniques and progress in the propagation of C. carpio and scope for further improvement

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have reviewed the phytoplankton composition and succession in the East African Great Lakes, their response to environmental changes, and the communities of microorganisms of the microbial food web. Recent studies in some great lakes, as well as progress in understanding phytoplankton succession and response to environmental factors, enable us to update knowledge of the phytoplankton ecology of these lakes. In particular, we present information indicating that phytoplankton composition in lakes Tanganyika and Kivu may reflect recent changes as a result of global warming or species introduction. We also stress the importance of microbes (at the base of the food web) in these systems and suggest that the microbial food web, which has been mostly overlooked until recently, may play a very large role in determining productivity and nutrient cycling in these large lakes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissection can provide unique information on the physiology, biology and ecology of organisms. This document describes protocols for dissecting lionfish (Pterois volitans and P. miles). Protocols were developed to provide guidance to trained research personnel. Lionfish are native to the Indo-Pacific, but have become established in marine habitats within the Western Atlantic, Gulf of Mexico and Caribbean. The protocols described within this document were designed to help standardize handling and dissection methodologies for these species, with the goal of improving the coordination of research (e.g., Lionfish Tissue Repository; Appendix V). We focus on dissection methods, which yield data that contribute to our understanding of lionfish biology and ecology. By pairing dissection information with environmental and biotic data, researchers and managers can better understand lionfish population structure and dynamics, age and growth, reproductive biology, and food web ecology on various temporal and spatial scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brown shrimp (Farfantepenaeus aztecus) are abundant along the Louisiana coast, a coastline that is heavily influenced by one of the world’s largest rivers, the Mississippi River. Stable carbon, nitrogen, and sulfur (CNS) isotopes of shrimp and their proventriculus (stomach) contents were assayed to trace riverine support of estuarine-dependent brown shrimp. Extensive inshore and of fshore collections were made in the Louisiana coastal zone during 1999–2006 to document shrimp movement patterns across the bay and shelf region. Results showed an unexpectedly strong role for nursery areas in the river delta in supporting the offshore fishery, with about 46% of immigrants to offshore regions arriving from riverine marshes. Strong river influences also were evident offshore, where cluster analysis of combined CNS isotope data showed three regional station groups related to river inputs. Two nearer-river mid-shelf station groups showed isotope values indicating river fertilization and productivity responses in the benthic shrimp food web, and a deeper offshore station group to the south and west showed much less river inf luence. At several mid-shelf stations where hypoxia is common, shrimp were anomalously 15N depleted versus their diets, and this d15N difference or mismatch may be useful in monitoring shrimp movement responses to hypoxia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fjord estuaries are common along the northeast Pacific coastline, but little information is available on fish assemblage structure and its spatiotemporal variability. Here, we examined changes in diversity metrics, species biomasses, and biomass spectra (the distribution of biomass across body size classes) over three seasons (fall, winter, summer) and at multiple depths (20 to 160 m) in Puget Sound, Washington, a deep and highly urbanized fjord estuary on the U.S. west coast. Our results indicate that this fish assemblage is dominated by cartilaginous species (spotted ratfish [Hydrolagus colliei] and spiny dogfish [Squalus acanthias]) and therefore differs fundamentally from fish assemblages found in shallower estuaries in the northeast Pacific. Diversity was greatest in shallow waters (<40 m), where the assemblage was composed primarily of flatfishes and sculpins, and lowest in deep waters (>80 m) that are more common in Puget Sound and that are dominated by spotted ratf ish and seasonally (fall and summer) by spiny dogfish. Strong depth-dependent variation in the demersal fish assemblage may be a general feature of deep fjord estuaries and indicates pronounced spatial variability in the food web. Future comparisons with less impacted fjords may offer insight into whether cartilaginous species naturally dominate these systems or only do so under conditions related to human-caused ecosystem degradation. Information on species distributions is critical for marine spatial planning and for modeling energy flows in coastal food webs. The data presented here will aid these endeavors and highlight areas for future research in this important yet understudied system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tidal freshwater of Virginia supports anadromous herring (Alosa spp.) spawning runs in the spring; however, their importance as nutrient delivery vectors to the freshwater fish food web remains unknown. The stable isotope signatures of fishes from 21 species and four different guilds (predators, carnivores, generalists, and planktivores) were examined in this study to test the hypothesis that marine derived nutrients (MDNs) brought by anadromous fish would be traced into the guilds that incorporated them. Spawning anadromous fish were 13C and 34S-enriched (δ13C and δ34S of approximately 18‰ and 17.7‰, respectively) relative to resident freshwater fish. Of the guilds examined, only predators showed 13C and 34S-enrichment similar to the anadromous fish; however, some generalist catfish also showed enriched signatures. Specific fatty acid δ13C signatures for gizzard shad (Dorosoma cepedianum), blue catfish (Ictalurus furcatus), and alewife (Alosa pseudoharengus), show a 10‰ range among fishes, clearly reflecting isotopically distinct dietary sources. The δ13C and δ34S distribution and range among the freshwater fishes suggest that both autochthonous and allochthonous (terrestrial C3 photosynthetic production and MDN) nutrient sources are important to the tidal freshwater fish community.