868 resultados para Food environment
Resumo:
Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Okinawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidly with increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm the modem shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to the bottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5 assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corresponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, dominated by Cassidulina carinata, Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispida, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4), lower continental slope - trough bottom assemblage, dominated by Pullenia bulloides, Epistominella exigua and Cibicidoides hyalinus, corresponds to deep water mass of the Okinawa Trough; and (5) trough bottom agglutinated assemblage, dominated by Rhabdammina spp., Bathysiphon flavidus, corresponds to I strongly dissolved environment of the trough bottom. The benthic foraminiferal fauna in the southern Okinawa Trough are controlled jointly by water masses and food supply. Water temperature, oxygen concentration and carbonate dissolution of the water masses are important controlling factors especially for the continental shelf break and trough bottom assemblages. The food supply also plays an important role in these benthic foraminiferal assemblages along the western slope. of the Okinawa Trough. Both the abundance and the 5 assemblages of benthic foraminifera correspond well to the organic matter supply along the continental slope and a lateral transport of TSM (total suspended matter) and POC (particulate organic carbon) from the shelf break to the deep water is also an important food supply for benthic fauna in this region.
Resumo:
R. Zwiggelaar, C.R. Bull, and M.J. Mooney, 'X-ray simulations for imaging applications in the agricultural and food industry', Journal of Agricultural Engineering Research 63(2), 161-170 (1996)
Resumo:
Bioluminescence is the production of light by living organisms as a result of a number of enzyme catalysed reactions caused by enzymes termed luciferases. The lux genes responsible for the emission of light can be cloned from one bioluminescent microorganism into one that is not bioluminescent. The light emitted can be monitored and quantified and will provide information on the metabolic activity, quantity and location of cells in a particular environment, in real-time. The primary aim of this thesis was to investigate and identify several food industry related applications of lux-tagged microorganisms. The first aim was to monitor a lux-tagged Cronobacter sakazakii in reconstituted infant milk formula, in realtime. The second aim was to investigate a bioluminescent-based early warning system for starter culture disruption by bacteriophages and antibiotic residues. The third of this thesis was to examine the use of a bioluminescent-based assay to test the activity of bioengineered Nisin derivatives M21V and S29A against foodborne pathogens in laboratory media and selected foods.
Resumo:
Irish monitoring data on PCDD/Fs, DL-PCBs and Marker PCBs were collated and combined with Irish Adult Food Consumption Data, to estimate dietary background exposure of Irish adults to dioxins and PCBs. Furthermore, all available information on the 2008 Irish pork dioxin food contamination incident was collated and analysed with a view to evaluate any potential impact the incident may have had on general dioxin and PCB background exposure levels estimated for the adult population in Ireland. The average upperbound daily intake of Irish adults to dioxins Total WHO TEQ (2005) (PCDD/Fs & DLPCBs) from environmental background contamination, was estimated at 0.3 pg/kg bw/d and at the 95th percentile at 1 pg/kg bw/d. The average upperbound daily intake of Irish adults to the sum of 6 Marker PCBs from environmental background contamination ubiquitous in the environment was estimated at 1.6 ng/kg bw/d and at the 95th percentile at 6.8 ng/kg bw/d. Dietary background exposure estimates for both dioxins and PCBs indicate that the Irish adult population has exposures below the European average, a finding which is also supported by the levels detected in breast milk of Irish mothers. Exposure levels are below health based guidance values and/or Body Burdens associated with the TWI (for dioxins) or associated with a NOAEL (for PCBs). Given the current toxicological knowledge, based on biomarker data and estimated dietary exposure, general background exposure of the Irish adult population to dioxins and PCBs is of no human health concern. In 2008, a porcine fat sample taken as part of the national residues monitoring programme led to the detection of a major feed contamination incidence in the Republic of Ireland. The source of the contamination was traced back to the use of contaminated oil in a direct-drying feed operation system. Congener profiles in animal fat and feed samples showed a high level of consistency and pinpointed the likely source of fuel contamination to be a highly chlorinated commercial PCB mixture. To estimate additional exposure to dioxins and PCBs due to the contamination of pig and cattle herds, collection and a systematic review of all data associated with the contamination incident was conducted. A model was devised that took into account the proportion of contaminated product reaching the final consumer during the 90 day contamination incident window. For a 90 day period, the total additional exposure to Total TEQ (PCDD/F &DL-PCB) WHO (2005) amounted to 407 pg/kg bw/90d at the 95th percentile and 1911 pg/kg bw/90d at the 99th percentile. Exposure estimates derived for both dioxins and PCBs showed that the Body Burden of the general population remained largely unaffected by the contamination incident and approximately 10 % of the adult population in Ireland was exposed to elevated levels of dioxins and PCBs. Whilst people in this 10 % cohort experienced quite a significant additional load to the existing body burden, the estimated exposure values do not indicate approximation of body burdens associated with adverse health effects, based on current knowledge. The exposure period was also limited in time to approximately 3 months, following the FSAI recall of contaminated meat immediately on detection of the contamination. A follow up breast milk study on Irish first time mothers conducted in 2009/2010 did not show any increase in concentrations compared to the study conducted in 2002. The latter supports the conclusion that the majority of the Irish adult population was not affected by the contamination incident.
Resumo:
SNAP and WIC help alleviate food insecurity among low-income families; however, some still struggle with fruit and vegetable accessibility. Farmers' markets present the opportunity to purchase fresher foods than other food retailers; therefore, we chose this environment to conduct our research. A survey of 70 WIC/SNAP shoppers at three D.C. metropolitan area farmers' markets assessed the correlation between parental self-efficacy and the home nutrition environment (composed of family health behavior, perceived barriers, and fruit and vegetable offerings in the home) and found a significant relationship. Interviews were used to evaluate market accessibility, SNAP/WIC benefit redemption, and the feasibility of accepting these benefits. Both market participants and coordinators mentioned the greater variety and superior quality of farmers' market produce but also suggested several improvements. Findings suggest that SNAP incentive programs may increase fruit and vegetable purchases. Programs targeting consumer self efficacy may also produce positive outcomes.
Resumo:
This review provides insights into the distribution and impact of oestrogens and xeno-oestrogens in the aquatic environment and highlights some significant knowledge gaps in our understanding of endocrine disrupting chemicals. Key areas of uncertainty in the assessment of risk include the role of estuarine sediments in mediating the fate and bioavailability of environmental (xeno)oestrogens (notably their transfer to benthic organisms and estuarine food chains), together with evidence for endocrine disruption in invertebrate populations. Emphasis is placed on using published information to interpret the behaviour and effects of a small number of model compounds thought to contribute to oestrogenic effects in nature; namely, the natural steroid 17 beta -oestradiol (E2) and the synthetic hormone 17 alpha -ethinyloestradiol (EE2), together with the alkyl-phenols octyl- and nonyl-phenol (OP, NP) as oestrogen mimics. Individual sections of the review are devoted to sources and concentrations of (xeno)oestrogens in waterways, sediment partitioning and persistence, bioaccumulation rates and routes, assays and biomarkers of oestrogenicity, and, finally, a synopsis of reproductive and ecological effects in aquatic species.
Resumo:
Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.
Resumo:
‘Wasp-waist’ systems are dominated by a mid trophic-level species that is thought to exert top-down control on its food and bottom-up control on its predators. Sardines, anchovy, and Antarctic krill are suggested examples, and here we use locusts to explore whether the wasp-waist concept also applies on land. These examples also display the traits of mobile aggregations and dietary diversity, which help to reduce the foraging footprint from their large, localised biomasses. This suggests that top-down control on their food operates at local aggregation scales and not at wider scales suggested by the original definition of wasp-waist. With this modification, the wasp-waist framework can cross-fertilise marine and terrestrial approaches, revealing how seemingly disparate but economically important systems operate.
Resumo:
During a 25 d Lagrangian study in May and June 1990 in the Northeast Atlantic Ocean, marine snow aggregates were collected using a novel water bottle, and the composition was determined microscopically. The aggregates contained a characteristic signature of a matrix of bacteria, cyanobacteria and autotrophic picoplankton with inter alia inclusions of the tintiniid Dictyocysta elegans and large pennate diatoms. The concentration of bacteria and cyanobacteria was much greater on the aggregates than when free-living by factors of 100 to 6000 and 3000 to 2 500 000, respectively, depending on depth. Various species of crustacean plankton and micronekton were collected, and the faecal pellets produced after capture were examined. These often contained the marine snow signature, indicating that these organisms had been consuming marine snow. In some cases, marine snow material appeared to dominate the diet. This implies a food-chain short cut wherby material, normally too small to be consumed by the mesozooplankton, and considered to constitute the diet of the microplankton can become part of the diet of organisms higher in the food-chain. The micronekton was dominated by the amphipod Themisto compressa, whose pellets also contained the marine snow signature. Shipboard incubation experiments with this species indicated that (1) it does consume marine snow, and (2) its gut-passage time is sufficiently long for material it has eaten in the upper water to be defecated at its day-time depth of several hundred meters. Plankton and micronekton were collected with nets to examine their vertical distribution and diel migration and to put into context the significance of the flux of material in the guts of migrants. “Gut flux” for the T. compressa population was calculated to be up to 2% of the flux measured simultaneously by drifting sediment traps and <5% when all migrants are considered. The in situ abundance and distribution of marine snow aggregates (>0.6 mm) was examined photographically. A sharp concentration peak was usually encountered in the depth range 40 to 80 m which was not associated with peaks of in situ fluorescence or attenuation but was just below or at the base of the upper mixed layer. The feeding behaviour of zooplankton and nekton may influence these concentration gradients to a considerable extent, and hence affect the flux due to passive settling of marine snow aggregates.
Resumo:
The marine environment provides a number of services which contribute to human well-being including the provision of food, regulation of climate and the provision of settings for cultural gains. To ensure these services continue to be provided, effective management is required and is being strategically implemented through the development of marine spatial plans. These plans require an understanding of the costs and benefits associated with alternative marine uses and how they contribute to human well-being. One benefit which is often difficult to quantify is the health benefit of engaging with the marine environment. To address this, the research develops an approach which can estimate the contribution aquatic physical activities makes to quality adjusted life years (QALYs) in monetary and non-monetary terms. Using data from the Health Survey for England, the research estimates that physical activities undertaken in aquatic environments at a national level provides a total gain of 24,853 QALYs. A conservative estimate of the monetary value of a QALY gain of this magnitude is £176 million. This approach provides estimates of health benefits which can be used in more comprehensive impact assessments, such as cost-benefit analysis, to compare alternative marine spatial plans. The paper concludes by discussing future steps.
Resumo:
The marine environment provides a number of services which contribute to human well-being including the provision of food, regulation of climate and the provision of settings for cultural gains. To ensure these services continue to be provided, effective management is required and is being strategically implemented through the development of marine spatial plans. These plans require an understanding of the costs and benefits associated with alternative marine uses and how they contribute to human well-being. One benefit which is often difficult to quantify is the health benefit of engaging with the marine environment. To address this, the research develops an approach which can estimate the contribution aquatic physical activities makes to quality adjusted life years (QALYs) in monetary and non-monetary terms. Using data from the Health Survey for England, the research estimates that physical activities undertaken in aquatic environments at a national level provides a total gain of 24,853 QALYs. A conservative estimate of the monetary value of a QALY gain of this magnitude is £176 million. This approach provides estimates of health benefits which can be used in more comprehensive impact assessments, such as cost-benefit analysis, to compare alternative marine spatial plans. The paper concludes by discussing future steps.
Resumo:
Calanus helgolandicus is a key copepod of the NE Atlantic and fringing shelves, with a distribution that is expanding northwards with oceanic warming. The Plymouth L4 site has warmed over the past 25-years, and experiences large variations in the timing and availability of food for C. helgolandicus. Here we examine the degree to which these changes translate into variation in reproductive output and subsequently C. helgolandicus population size. Egg production rates (eggs female−1 day−1) were maximal in the spring to early-summer period of diatom blooms and high ciliate abundance, rather than during the equally large autumn blooms of autotrophic dinoflagellates. Egg hatch success was lower in spring however, with a greater proportion of naupliar deformities then also. Both the timing and the mean summer abundance of C. helgolandicus (CI–CVI) reflected those of spring total reproductive output. However this relationship was driven by inter-annual variability in female abundance and not that of egg production per female, which ranged only two-fold. Winter abundance of C. helgolandicus at L4 was much more variable than abundance in other seasons, and reflected conditions from the previous growing season. However, these low winter abundances had no clear carry-over signal to the following season’s population size. Overall, the C. helgolandicus population appears to be surprisingly resilient at this dynamic, inshore site, showing no long-term phenology shift and only a four-fold variation in mean abundance between years. This dampening effect may reflect a series of mortality sources, associated with the timing of stratification in the early part of the season, likely affecting egg sinking and loss, plus intense, density-dependent mortality of early stages in mid-summer likely through predation.
Resumo:
In a warming climate, differential shifts in the seasonal timing of predators and prey have been suggested to lead to trophic ‘‘mismatches’’ that decouple primary, secondary and tertiary production. We tested this hypothesis using a 25-year time-series of weekly sampling at the Plymouth L4 site, comparing 57 plankton taxa spanning 4 trophic levels. During warm years, there was a weak tendency for earlier timings of spring taxa and later timings of autumn taxa. While this is in line with many previous findings, numerous exceptions existed and only a few taxa (e.g. Gyrodinium spp., Pseudocalanus elongatus, and Acartia clausi) showed consistent, strong evidence for temperature-related timing shifts, revealed by all 4 of the timing indices that we used. Also, the calculated offsets in timing i.e. ‘‘mismatches’’) between predator and prey were no greater in extreme warm or cold years than during more average years. Further, the magnitude of these offsets had no effect on the ‘‘success’’ of the predator, in terms of their annual mean abundance or egg production rates. Instead numerous other factors override, including: inter-annual variability in food quantity, high food baseline levels, turnover rates and prolonged seasonal availability, allowing extended periods of production. Furthermore many taxa, notably meroplankton, increased well before the spring bloom. While theoretically a chronic mismatch, this likely reflects trade-offs for example in predation avoidance. Various gelatinous taxa (Phaeocystis, Noctiluca, ctenophores, appendicularians, medusae) may have reduced these predation constraints, with variable, explosive population outbursts likely responding to improved conditions. The match–mismatch hypothesis may apply for highly seasonal, pulsed systems or specialist feeders, but we suggest that the concept is being over-extended to other marine systems where multiple factors compensate.
Resumo:
Modem society depends on complex agro-ecological and trading systems to provide food for urban residents, yet there are few tools available to assess whether these systems are vulnerable to future disturbances. We propose a preliminary framework to assess the vulnerability of food systems to future shocks based on landscape ecology's 'Panarchy Framework'. According to Panarchy, ecosystem vulnerability is determined by three generic characteristics: (1) the wealth available in the system, (2) how connected the system is, and (3) how much diversity exists in the system. In this framework, wealthy, non-diverse, tightly connected systems are highly vulnerable. The wealth of food systems can be measured using the approach pioneered by development economists to assess how poverty affects food security. Diversity can be measured using the tools investors use to measure the diversity of investment portfolios to assess financial risk. The connectivity of a system can be evaluated with the tools chemists use to assess the pathways chemicals use to flow through the environment. This approach can lead to better tools for creating policy designed to reduce vulnerability, and can help urban or regional planners identify where food systems are vulnerable to shocks and disturbances that may occur in the future. (c) 2005 Elsevier Ltd. All rights reserved.