972 resultados para Foam Jet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum (PT) and radius, the minimum associated jet pi, and the association radius is computed up to next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of k(t) subjets of an anti-k(t) jet is found to be an observable that leads to a rather uniform prediction across different MC's, broadly being in agreement with predictions in NDLA, as compared to the often used number of charged tracks observable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of highly dense ZnO nanowires (ZnO NWs) is demonstrated on three-dimensional graphene foam (GF) using resistive thermal evaporation technique. Photoresponse of the as-grown hybrid structure of ZnO NWs on GF (ZnO NWs/GF) is evaluated for ultraviolet (UV) detection. Excellent photoresponse with fast response and recovery times of 9.5 and 38 s with external quantum efficiency of 2490.8% is demonstrated at low illumination power density of 1.3 mW/cm(2). In addition, due to excellent charge carrier transport, mobility of graphene reduces the recombination rate of photogenerated charge carriers, hence the lifetime of photogenerated free charge carriers enhances in the photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressive behavior of carbon nanotube (CNT) foam with an entangled microstructure has become an important research area due to its excellent energy absorption capability. This report presents a tailored mechanical behavior of CNT foam under an applied magnetic field when all CNTs in the foam are coated with magnetic nanoparticles. The presence of nanoparticles not only enhanced the stiffness of the foam to four times but also revealed a nonlinear variation in both the stress and energy absorption capability with the gradual increase of the magnetic field. Magnetization of both CNT and attached nanoparticles along the magnetic field direction are shown to play a crucial role in determining the dominant deformation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultralight and macroporous three-dimensional reduced graphene oxide (rGO) foams are prepared by lyophilization (freeze-drying) technique to avoid a conventional template method. This method allows tailoring the porosity of the foams by varying the weight percentages of graphene oxide dispersions in water. Three different rGO foams of 0.2, 0.5 and 1.0 wt% are used for NO2 sensing. Sensing response from the tailored structure of rGO is found to be directly related to the density. A maximum of 20% sensing response is observed for a higher porosity of the structure, better than the known results so far on graphene foams in the literature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tropical easterly jet (TEJ) is a prominent atmospheric circulation feature observed during the Asian summer monsoon. It is generally assumed that sensible heating over the Tibetan Plateau directly influences the location of the TEJ. However, other studies have suggested the importance of latent heating in determining the jet location. In this paper, the relative importance of latent heating on the maintenance of the TEJ is explored through simulations with a general circulation model. The simulation of the TEJ by the Community Atmosphere Model, version 3.1 is discussed in detail. These simulations showed that the location of the TEJ is well correlated with the location of the precipitation. Significant zonal shifts in the location of the precipitation resulted in similar shifts in the zonal location of the TEJ. These zonal shifts had minimal effect on the large-scale structure of the jet. Further, provided that precipitation patterns were relatively unchanged, orography did not directly impact the location of the TEJ. These changes were robust even with changes in the cumulus parameterization. This suggests the potential important role of latent heating in determining the location and structure of the TEJ. These results were used to explain the significant differences in the zonal location of the TEJ in the years 1988 and 2002. To understand the contribution of the latitudinal location of latent heating on the strength of the TEJ, aqua-planet simulations were carried out. It has been shown that for similar amounts of net latent heating, the jet is stronger when heating is in the higher tropical latitudes. This may partly explain the reason for the jet to be very strong during the JJA monsoon season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用特殊设计的等离子体发生器,选择等离子体产生的工艺参数,实现工艺过程的精确控制,在大气压环境下获得了性能稳定的氖气直流层流等离子体射流。与湍流等离子体射流长度较短、径向尺寸较大、工作噪音高等特点相比,层流等离于体射流长度可达到550mm,而且沿整个射流长度其径向尺寸维持不变,工作噪音很小。当气流量为120cm~3/s、弧电流在70-200A的范围时,射流长度随弧电流的增加而增加,热效率起初略有降低然后维持平稳。随气流量的增加,层流等离子体射流的热效率也增加,在弧电流为200A时,可以达到40%。实验中测

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar-flow non-transferred DC plasma jets were generated by a torch with an inter-electrode insert by which the arc column was limited to a length of about 20 mm. Current–voltage characteristics, thermal efficiency and jet length, a parameter which changes greatly with the generating parameters in contrast with the almost unchangeable jet length of the turbulent plasma, were investigated systematically, by using the similarity theory combined with the corresponding experimental examination. Formulae in non-dimensional forms were derived for predicting the characteristics of the laminar plasma jet generation, within the parameter ranges where no transfer to turbulent flow occurs. Mean arc temperature in the torch channel and mean jet-flow temperature at the torch exit were obtained, and the results indicate that the thermal conductivity feature of the working gas seems to be an important factor affecting thermal efficiency of laminar plasma generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nontransferred DC laminar plasma jets of stable flow and low impinging pressure acting on the substrate were used to heat W–Mo–Cu cast iron for phase transfer hardening of the surface layer. Substrates were heated in multipass with or without overlapping or heated with only single-pass. Surface morphologies of the molten trace and microstructure of the cross-section were observed, and the hardness distribution of the treated surface layer was examined. The surface layer of single-pass-heated specimen has an average hardness of about 900 HV0.1, while the specimen treated with multipass shows an average hardness of about 700 HV0.1, because of the heat effect from the neighboring pass treating, compared with the substrate hardness of about 300 HV0.1. The results demonstrate the stable and favorably controlled heating of the laminar plasma jet on the substrate surface and feasibility of using it as a tool for surface hardening of cast iron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "interaction effect" between aluminum foam and metal column that takes place when foam-filled hat sections (top-hats and double-hats) are axially crushed was investigated in this paper. Based on experimental examination, numerical simulation and analytical models, a systemic approach was developed to partition the energy absorption quantitatively into the foam filler component and the hat section component, and the relative contribution of each component to the overall interaction effect was therefore evaluated. Careful observation of the collapse profile found that the crushed foam filler could be further divided into two main energy-dissipation regions: densified region and extremely densified region. The volume reduction and volumetric strain of each region were empirically estimated. An analytical model pertinent to the collapse profile was thereafter proposed to find the more precise relationship between the volume reduction and volumetric strain of the foam filler. Combined the superfolding element model for hat sections with the current model according to the coupled method, each component energy absorption was subsequently derived, and the influence of some controlling factors was discussed. According to the finite element analysis and the theoretical modeling, when filled with foam, energy absorption was found to be increased both in the hat section and the foam filler, whereas the latter contributes predominantly to the interaction effect. The formation of the extremely densified region in the foam filler accounts for this effect.