972 resultados para Fluorophoric Probe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group velocity of the probe light pulse (GVPLP) propagating through an open Lambda-type atomic system with a spontaneously generated coherence is investigated when the weak probe and strong driving light fields have different frequencies. It is found that adjusting the detuning or Rabi frequency of the probe light field can realize switching of the GVPLP from subluminal to superluminal. Changing the relative phase between the probe and driving light. elds or atomic exit and injection rates can lead to GVPLP varying in a wider range, but cannot induce transformation of the property of the GVPLP. The absolute value of the GVPLP always increases with Rabi frequency of the driving light field increasing. For subluminal and superluminal propagation, the system always exhibits the probe absorption, and GVPLP is mainly determined by the slope of the steep dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group velocities of the probe laser field are studied in a A-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance. we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.

In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.

We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.

We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.

In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.

Finally, we discuss prospects for related future investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal noise arising from mechanical loss in high reflective dielectric coatings is a significant source of noise in precision optical measurements. In particular, Advanced LIGO, a large scale interferometer aiming to observed gravitational wave, is expected to be limited by coating thermal noise in the most sensitive region around 30–300 Hz. Various theoretical calculations for predicting coating Brownian noise have been proposed. However, due to the relatively limited knowledge of the coating material properties, an accurate approximation of the noise cannot be achieved. A testbed that can directly observed coating thermal noise close to Advanced LIGO band will serve as an indispensable tool to verify the calculations, study material properties of the coating, and estimate the detector’s performance.

This dissertation reports a setup that has sensitivity to observe wide band (10Hz to 1kHz) thermal noise from fused silica/tantala coating at room temperature from fixed-spacer Fabry–Perot cavities. Important fundamental noises and technical noises associated with the setup are discussed. The coating loss obtained from the measurement agrees with results reported in the literature. The setup serves as a testbed to study thermal noise in high reflective mirrors from different materials. One example is a heterostructure of AlxGa1−xAs (AlGaAs). An optimized design to minimize thermo–optic noise in the coating is proposed and discussed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is a product of close industry-academia collaboration between British Aerospace and the Cambridge Engineering Design Centre (EDC). British Aerospace designs and integrates some of the most complex systems in the world, and its expertise in this field has enabled the company to become the United Kingdom's largest exporter. However, to stay at the forefront of the highly competitive aerospace industry it is necessary to seek new ways to work more effectively and more efficiently. The Cambridge EDC has played a part in supporting these needs by providing access to the methods and tools that it has developed for improving the process of designing mechanical systems. The EDC has gained an international reputation for the quality of its work in this subject. Thus, the collaboration is between two organisations each of whom are leaders in their respective fields. The central aim of the project has been to demonstrate how a systematic design process can be applied to a real design task identified by industry. The task selected was the design of a flight refuelling probe which would enable a combat aircraft to refuel from a "flying tanker". However, the systematic approach, methods and tools described in this report are applicable to most engineering design tasks. The findings presented in this report provide a sound basis for comparing the recommended systematic design process with industrial practice. The results of this comparison would enable the company to define ways in which its existing design process can be improved. This research project has a high degree of industrial relevance. The value of the work may be judged in terms of the opportunities it opens up for positive changes to the company's engineering operations. Several members of the EDC have contributed to the project. These include Dr Lucienne Blessing, Dr Stuart Burgess, Dr Amaresh Chakrabarti, Major Mark Nowack, Aylmer Johnson and Dr Paul Weaver. At British Aerospace special thanks must go to Alan Dean and David Halliday for their interest and the support they have given. The project has been managed by Dr Nigel Upton of British Aerospace during a 3 year secondment to the EDC.