932 resultados para Flow rate variation coefficient
Resumo:
Two-wheelers (TW) constitute a major proportion of urban traffic in developing countries and therefore their effect on the saturation flow at signalized intersections could be substantial. This paper attempts to study and analyze the effect of two-wheelers on the saturation flow of signalized intersections by collecting data at a few signalized intersections in Bangalore, India. A strong correlation is observed between the measured saturation flow and the proportion of two-wheeler traffic, which suggest that two-wheelers have significant impact and should be considered in the capacity analysis of signalized intersections. In this paper, the effect of two-wheelers on saturation flow rate is incorporated in a previous model by calibrating and introducing a new adjustment factor for two-wheelers. Results show that saturation flow measured using the modified HCM equation is closer to observed saturation flow values.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
This article aims at seeking the universal behavior of propagation rate variation with air superficial velocity (V-s) in a packed bed of a range of biomass particles in reverse downdraft mode while also resolving the differing and conflicting explanations in the literature. Toward this, measurements are made of exit gas composition, gas phase and condensed phase surface temperature (T-g and T-s), and reaction zone thickness for a number of biomass with a range of properties. Based on these data, two regimes are identified: gasificationvolatile oxidation accompanied by char reduction reactions up to 16 +/- 1cm/s of V-s and above this, and char oxidationsimultaneous char oxidation and gas phase combustion. In the gasification regime, the measured T-s is less than T-g; a surface heat balance incorporating a diffusion controlled model for flaming combustion gives and matches with the experimental results to within 5%. In the char oxidation regime, T-g and T-s are nearly equal and match with the equilibrium temperature at that equivalence ratio. Drawing from a recent study of the authors, the ash layer over the oxidizing char particle is shown to play a critical role in regulating the radiation heat transfer to fresh biomass in this regime and is shown to be crucial in explaining the observed propagation behavior. A simple model based on radiation-convection balance that tracks the temperature-time evolution of a fresh biomass particle is shown to support the universal behavior of the experimental data on reaction front propagation rate from earlier literature and the present work for biomass with ash content up to 10% and moisture fraction up to 10%. Upstream radiant heat transfer from the ash-laden hot char modulated by the air flow is shown to be the dominant feature of this model.
Resumo:
We propose a light sheet based imaging flow cytometry technique for simultaneous counting and imaging of cells on a microfluidic platform. Light sheet covers the entire microfluidic channel and thus omits the necessity of flow focusing and point scanning based technology. Another advantage lies in the orthogonal detection geometry that totally cuts-off the incident light, thereby substantially reducing the background in the detection. Compared to the existing state-of-art techniques the proposed technique shows marked improvement. Using fluorescently-coated Saccharomyces cerevisiae cells we have recorded cell counting with throughput as high as 2,090 cells/min in the low flow rate regime and were able to image the individual cells on-the-go. Overall, the proposed system is cost-effective and simple in channel geometry with the advantage of efficient counting in operational regime of low laminar flow. This technique may advance the emerging field of microfluidic based cytometry for applications in nanomedicine and point of care diagnostics. Microsc. Res. Tech. 76:1101-1107, 2013. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Long range, continuous flow of liquid metals occurs upon application of an electric current. Here, we report experimental results elucidating the mechanism of current-induced liquid metal flow, and its dependence on substrate surface condition. It is shown that the observed flow is diffusion-controlled, with the flow-rate depending linearly on applied current density, indicating that it is driven by electromigration. The effective charge number for liquid electromigration, Z*, of several pure metals, such as Al, Bi, Ga, Sn, and Pb, were deduced from the experimental results and were found to be close to the elemental valency. With the exception of liquid Pb, Z* for all liquid metals tested in this study were positive, indicating that: (i) electron wind contributes much less to Z* in liquid metals than in solids, and (ii) with a few exceptions, liquid metals generally flow in the direction of the electric current. On smooth substrates which are wetted well by the liquid metal, flow occurs in a thin, continuous stream. On rough surfaces which are poorly wetted, on the other hand, discrete beads of liquid form, with mass transport between adjacent beads occurring by surface diffusion on the substrate. A rationale for the role of substrate roughness in fostering this observed transition in flow mechanism is presented. (C) 2014 AIP Publishing LLC.
Resumo:
Ni-Fe-Ga-based alloys form a new class of ferromagnetic shape memory alloys (FSMAs) that show considerable formability because of the presence of a disordered fcc gamma-phase. The current study explores the deformation processing of this alloy using an off-stoichiometric Ni55Fe59Ga26 alloy that contains the ductile gamma-phase. The hot deformation behavior of this alloy has been characterized on the basis of its flow stress variation obtained by isothermal constant true strain rate compression tests in the 1123-1323 K temperature range and strain rate range of 10(-3)-10 s(-1) and using a combination of constitutive modeling and processing map. The dynamic recrystallization (DRX) regime for thermomechanical processing has been identified for this Heusler alloy on the basis of the processing maps and the deformed microstructures. This alloy also shows evidence of dynamic strain-aging (DSA) effect which has not been reported so far for any Heusler FSMAs. Similar effect is also noticed in a Ni-Mn-Ga-based Heusler alloy which is devoid of any gamma-phase. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Soluble lead acid redox flow battery (SLRFB) offers a number of advantages. These advantages can be harnessed after problems associated with buildup of active material on. electrodes (residue) are resolved. A mathematical model is developed to understand residue formation in SLRFB. The model incorporates fluid flow, ion transport, electrode reactions, and non-uniform current distribution on electrode surfaces. A number of limiting cases are studied to conclude that ion transport and electrode reaction on anode simultaneously control battery performance. The model fits the reported cell voltage vs. time profiles very well. During the discharge cycle, the model predicts complete dissolution of deposited material from trailing edge side of the electrodes. With time, the active surface area of electrodes decreases rapidly. The corresponding increase in current density leads to precipitous decrease in cell potential before all the deposited material is dissolved. The successive charge-discharge cycles add to the residue. The model correctly captures the marginal effect of flow rate on cell voltage profiles, and identifies flow rate and flow direction as new variables for controlling residue buildup. Simulations carried out with alternating flow direction and a SLRFB with cylindrical electrodes show improved performance with respect to energy efficiency and residue buildup. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.
Resumo:
Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.
Resumo:
Modeling study is performed to compare the flow and heat transfer characteristics of laminar and turbulent argon thermal-plasma jets impinging normally upon a flat plate in ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon-air mixture for the laminar and the turbulent cases, respectively. Modeling results presented include the flow, temperature and argon concentration fields, the air mass flow-rates entrained into the impinging plasma jets, and the distributions of the heat flux density on the plate surface. It is found that the formation of a radial wall jet on the plate surface appreciably enhances the mass flow rate of the ambient air entrained into the laminar or turbulent plasma impinging-jet. When the plate standoff distance is comparatively small, there exists a significant difference between the laminar and turbulent plasma impinging-jets in their flow fields due to the occurrence of a large closed recirculation vortex in the turbulent plasma impinging-jet, and no appreciable difference is found between the two types of jets in their maximum values and distributions of the heat flux density at the plate surface. At larger plate standoff distances, the effect of the plate on the jet flow fields only appears in the region near the plate, and the axial decaying-rates of the plasma temperature, axial velocity and argon mass fraction along the axis of the laminar plasma impinging-jet become appreciably less than their turbulent counterparts.
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy gamma-ray system is described. The gamma-ray source is the radioactive isotope of Am-241 with gamma-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed gamma-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.
Resumo:
A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.
Resumo:
The critical cavitating flow in liquid jet pumps under operating limits is investigated in this paper. Measurements on the axial pressure distribution along the wall of jet pumps indicate that two-phase critical flow occurs in the throat pipe under operating limits. The entrained flow rate and the distribution of the wall pressure upstream lowest pressure section does not change when the outlet pressure is lower than a critical value. A liquid-vapor mixing shockwave is also observed under operating limits. The wave front moves back and forth in low frequency around the position of the lowest pressure. With the measured axial wall pressures, the Mach number of the two-phase cavitating flow is calculated. It's found that the maximum Mach number is very close to I under operating limits. Further analysis infers a cross-section where Mach number approaches to I near the wave front. Thus, the liquid-vapor mixture velocity should reach the local sound velocity and resulting in the occurrence of operating limits.
Resumo:
The study presented here was carried out to obtain the actual solids flow rate by the combination of electrical resistance tomography and electromagnetic flow meter. A new in-situ measurement method based on measurements of the Electromagnetic Flow Meters (EFM) and Electrical Resistance Tomography (ERT) to study the flow rates of individual phases in a vertical flow was proposed. The study was based on laboratory experiments that were carried out with a 50 mm vertical flow rig for a number of sand concentrations and different mixture velocities. A range of sand slurries with median particle size from 212 mu m to 355 mu m was tested. The solid concentration by volume covered was 5% and 15%, and the corresponding density of 5% was 1078 kg/m(3) and of 15% was 1238 kg/m(3). The flow velocity was between 1.5 m/s and 3.0 m/s. A total of 6 experimental tests were conducted. The equivalent liquid model was adopted to validate in-situ volumetric solids fraction and calculate the slip velocity. The results show that the ERT technique can be used in conjunction with an electromagnetic flow meter as a way of measurement of slurry flow rate in a vertical pipe flow. However it should be emphasized that the EFM results must be treated with reservation when the flow pattern at the EFM mounting position is a non-homogenous flow. The flow rate obtained by the EFM should be corrected considering the slip velocity and the flow pattern.