978 resultados para Flow Vector Tracking


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el presente trabajo se aborda el problema del seguimiento de objetos, cuyo objetivo es encontrar la trayectoria de un objeto en una secuencia de video. Para ello, se ha desarrollado un método de seguimiento-por-detección que construye un modelo de apariencia en un dominio comprimido usando una nueva e innovadora técnica: “compressive sensing”. La única información necesaria es la situación del objeto a seguir en la primera imagen de la secuencia. El seguimiento de objetos es una aplicación típica del área de visión artificial con un desarrollo de bastantes años. Aun así, sigue siendo una tarea desafiante debido a varios factores: cambios de iluminación, oclusión parcial o total de los objetos y complejidad del fondo de la escena, los cuales deben ser considerados para conseguir un seguimiento robusto. Para lidiar lo más eficazmente posible con estos factores, hemos propuesto un algoritmo de tracking que entrena un clasificador Máquina Vector Soporte (“Support Vector Machine” o SVM en sus siglas en inglés) en modo online para separar los objetos del fondo de la escena. Con este fin, hemos generado nuestro modelo de apariencia por medio de un descriptor de características muy robusto que describe los objetos y el fondo devolviendo un vector de dimensiones muy altas. Por ello, se ha implementado seguidamente un paso para reducir la dimensionalidad de dichos vectores y así poder entrenar nuestro clasificador en un dominio mucho menor, al que denominamos domino comprimido. La reducción de la dimensionalidad de los vectores de características se basa en la teoría de “compressive sensing”, que dice que una señal con poca dispersión (pocos componentes distintos de cero) puede estar bien representada, e incluso puede ser reconstruida, a partir de un conjunto muy pequeño de muestras. La teoría de “compressive sensing” se ha aplicado satisfactoriamente en este trabajo y diferentes técnicas de medida y reconstrucción han sido probadas para evaluar nuestros vectores reducidos, de tal forma que se ha verificado que son capaces de preservar la información de los vectores originales. También incluimos una actualización del modelo de apariencia del objeto a seguir, mediante el reentrenamiento de nuestro clasificador en cada cuadro de la secuencia con muestras positivas y negativas, las cuales han sido obtenidas a partir de la posición predicha por el algoritmo de seguimiento en cada instante temporal. El algoritmo propuesto ha sido evaluado en distintas secuencias y comparado con otros algoritmos del estado del arte de seguimiento, para así demostrar el éxito de nuestro método.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of the local Lagrangian evolution of the flow topology in wall-bounded turbulence, and of the Lagrangian evolution associated with entrainment across the turbulent / non-turbulent interface into a turbulent boundary layer, require accurate tracking of a fluid particle and its local velocity gradients. This paper addresses the implementation of fluid-particle tracking in both a turbulent boundary layer direct numerical simulation and in a fully developed channel flow simulation. Determination of the sub-grid particle velocity is performed using both cubic B-spline, four-point Hermite spline and higher-order Hermite spline interpolation. Both wall-bounded flows show similar oscillations in the Lagrangian tracers of both velocity and velocity gradients, corresponding to the movement of particles across the boundaries of computational cells. While these oscillation in the particle velocity are relatively small and have negligible effect on the particle trajectories for time-steps of the order of CFL = 0.1, they appear to be the cause of significant oscillations in the evolution of the invariants of the velocity gradient tensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the hypothesis that surface P-selectin-positive (degranulated) platelets are rapidly cleared from the circulation, we developed novel methods for tracking of platelets and measurement of platelet function in vivo. Washed platelets prepared from nonhuman primates (baboons) were labeled with PKH2 (a lipophilic fluorescent dye), thrombin-activated, washed, and reinfused into the same baboons. Three-color whole blood flow cytometry was used to simultaneously (i) identify platelets with a mAb directed against glycoprotein (GP)IIb-IIIa (integrin alpha 11b beta 3), (ii) distinguish infused platelets by their PKH2 fluorescence, and (iii) analyze platelet function with mAbs. Two hours after infusion of autologous thrombin-activated platelets (P-selectin-positive, PKH2-labeled), 95 +/- 1% (mean +/- SEM, n = 5) of the circulating PKH2-labeled platelets had become P-selectin-negative. Compared with platelets not activated with thrombin preinfusion, the recovery of these circulating PKH2-labeled, P-selectin-negative platelets was similar 24 h after infusion and only slightly less 48 h after infusion. The loss of platelet surface P-selectin was fully accounted for by a 67.1 +/- 16.7 ng/ml increase in the plasma concentration of soluble P-selectin. The circulating PKH2-labeled, P-selectin-negative platelets were still able to function in vivo, as determined by their (i) participation in platelet aggregates emerging from a bleeding time wound, (ii) binding to Dacron in an arteriovenous shunt, (iii) binding of mAb PAC1 (directed against the fibrinogen binding site on GPIIb-IIIa), and (iv) generation of procoagulant platelet-derived microparticles. In summary, (i) circulating degranulated platelets rapidly lose surface P-selectin to the plasma pool, but continue to circulate and function; and (ii) we have developed novel three-color whole blood flow cytometric methods for tracking of platelets and measurement of platelet function in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reexamine the Gouy phase in ballistic Airy beams (AiBs). A physical interpretation of our analysis is derived in terms of the local phase velocity and the Poynting vector streamlines. Recent experiments employing AiBs are consistent with our results. We provide an approach which potentially applies to any finite-energy paraxial wave field that lacks a beam axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle flow patterns were investigated for wet granulation and dry powder mixing in ploughshare mixers using Positron Emission Particle Tracking (PEPT). In a 4-1 mixer, calcium carbonate with mean size 45 mum was granulated using a 50 wt.% solution of glycerol and water as binding fluid, and particle movement was followed using a 600-mum calcium hydroxy-phosphate tracer particle. In a 20-1 mixer, dry powder flow was studied using a 600-mum resin bead tracer particle to simulate the bulk polypropylene powder with mean size 600 mum. Important differences were seen between particle flow patterns for wet and dry systems. Particle speed relative to blade speed was lower in the wet system than in the dry system, with the ratios of average particle speed to blade tip speed for all experiments in the range 0.01-015. In the axial plane, the same particle motion was observed around each blade; this provides a significant advance for modelling flow in ploughshare mixers. For the future, a detailed understanding of the local velocity, acceleration and density variations around a plough blade will reveal the effects of flow patterns in granulating systems on the resultant distribution of granular product attributes such as size, density and strength. (C) 2002 Elsevier Science B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel class of nonlinear, visco-elastic rheologies has recently been developed by MUHLHAUS et al. (2002a, b). The theory was originally developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of the layer surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the so-called director of these surfaces. Here the model (MUHLHAUS et al., 2002a, b) is generalized to include thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then turn to natural convection and compare the time evolution and approximately steady states of isotropic and anisotropic convection for a Rayleigh number Ra=5.64x10(5) for aspect ratios of the experimental domain of 1 and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers, and the number of convection cells which develop appears to be reduced in the orthotropic case. At the moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio one to two in the model domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel interpretation and usage of Neural Network (NN) in modeling physiological signals, which are allowed to be nonlinear and/or nonstationary. The method consists of training a NN for the k-step prediction of a physiological signal, and then examining the connection-weight-space (CWS) of the NN to extract information about the signal generator mechanism. We de. ne a novel feature, Normalized Vector Separation (gamma(ij)), to measure the separation of two arbitrary states i and j in the CWS and use it to track the state changes of the generating system. The performance of the method is examined via synthetic signals and clinical EEG. Synthetic data indicates that gamma(ij) can track the system down to a SNR of 3.5 dB. Clinical data obtained from three patients undergoing carotid endarterectomy of the brain showed that EEG could be modeled (within a root-means-squared-error of 0.01) by the proposed method, and the blood perfusion state of the brain could be monitored via gamma(ij), with small NNs having no more than 21 connection weight altogether.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents pressure distributions and fluid flow patterns on the shellside of a cylindrical shell-and-tube heat exchanger. The apparatus used was constructed from glass enabling direct observation of the flow using a dye release technique and had ten traversable pressure instrumented tubes permitting detailed pressure distributions to be obtained. The `exchanger' had a large tube bundle (278 tubes) and main flow areas typical of practical designs. Six geometries were studied: three baffle spacings both with and without baffle leakage. Results are also presented of three-dimensional modelling of shellside flows using the Harwell Laboratory's FLOW3D code. Flow visualisation provided flow patterns in the central plane of the bundle and adjacent to the shell wall. Comparison of these high-lighted significant radial flow variations. In particular, separated regions, originating from the baffle tips, were observed. The size of these regions was small in the bundle central plane but large adjacent to the shell wall and extended into the bypass lane. This appeared to reduce the bypass flow area and hence the bypass flow fraction. The three-dimensional flow modelling results were presented as velocity vector and isobar maps. The vector maps illustrated regions of high and low velocity which could be prone to tube vibration and fouling. Separated regions were also in evidence. A non-uniform crossflow was discovered with, in general, higher velocities in the central plane of the bundle than near the shell wall._The form of the isobar maps calculated by FLOW3D was in good agreement with experimental results. In particular, larger pressure drops occurred across the inlet than outlet of a crossflow region and were higher near the upstream than downstream baffle face. The effect of baffle spacing and baffle leakage on crossflow and window pressure drop measurements was identified. Agreement between the current measurements, previously obtained data and commonly used design correlations/models was, in general, poor. This was explained in terms of the increased understanding of shellside flow. The bulk of previous data, which dervies from small-scale rigs with few tubes, have been shown to be unrepresentative of typical commerical units. The Heat Transfer and Fluid Flow Service design program TASC provided the best predictions of the current pressure drop results. However, a number of simple one-dimensional models in TASC are, individually, questionable. Some revised models have been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents an effective methodology for the generation of a simulation which can be used to increase the understanding of viscous fluid processing equipment and aid in their development, design and optimisation. The Hampden RAPRA Torque Rheometer internal batch twin rotor mixer has been simulated with a view to establishing model accuracies, limitations, practicalities and uses. As this research progressed, via the analyses several 'snap-shot' analysis of several rotor configurations using the commercial code Polyflow, it was evident that the model was of some worth and its predictions are in good agreement with the validation experiments, however, several major restrictions were identified. These included poor element form, high man-hour requirements for the construction of each geometry and the absence of the transient term in these models. All, or at least some, of these limitations apply to the numerous attempts to model internal mixes by other researchers and it was clear that there was no generally accepted methodology to provide a practical three-dimensional model which has been adequately validated. This research, unlike others, presents a full complex three-dimensional, transient, non-isothermal, generalised non-Newtonian simulation with wall slip which overcomes these limitations using unmatched ridding and sliding mesh technology adapted from CFX codes. This method yields good element form and, since only one geometry has to be constructed to represent the entire rotor cycle, is extremely beneficial for detailed flow field analysis when used in conjunction with user defined programmes and automatic geometry parameterisation (AGP), and improves accuracy for investigating equipment design and operation conditions. Model validation has been identified as an area which has been neglected by other researchers in this field, especially for time dependent geometries, and has been rigorously pursued in terms of qualitative and quantitative velocity vector analysis of the isothermal, full fill mixing of generalised non-Newtonian fluids, as well as torque comparison, with a relatively high degree of success. This indicates that CFD models of this type can be accurate and perhaps have not been validated to this extent previously because of the inherent difficulties arising from most real processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybrid Molecular Dynamics/Fluctuating Hydrodynamics framework based on the analogy with two-phase hydrodynamics has been extended to dynamically tracking the feature of interest at all-atom resolution. In the model, the hydrodynamics description is used as an effective boundary condition to close the molecular dynamics solution without resorting to standard periodic boundary conditions. The approach is implemented in a popular Molecular Dynamics package GROMACS and results for two biomolecular systems are reported. A small peptide dialanine and a complete capsid of a virus porcine circovirus 2 in water are considered and shown to reproduce the structural and dynamic properties compared to those obtained in theory, purely atomistic simulations, and experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is to establish new optimization methods for pattern recognition and classification of different white blood cells in actual patient data to enhance the process of diagnosis. Beckman-Coulter Corporation supplied flow cytometry data of numerous patients that are used as training sets to exploit the different physiological characteristics of the different samples provided. The methods of Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used as promising pattern classification techniques to identify different white blood cell samples and provide information to medical doctors in the form of diagnostic references for the specific disease states, leukemia. The obtained results prove that when a neural network classifier is well configured and trained with cross-validation, it can perform better than support vector classifiers alone for this type of data. Furthermore, a new unsupervised learning algorithm---Density based Adaptive Window Clustering algorithm (DAWC) was designed to process large volumes of data for finding location of high data cluster in real-time. It reduces the computational load to ∼O(N) number of computations, and thus making the algorithm more attractive and faster than current hierarchical algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many coastal wetland communities of south Florida have been cut off from freshwater sheet flow for decades and are migrating landward due to salt-water encroachment. A paleoecological study using mollusks was conducted to assess the rates and effects of salt-water encroachment due to freshwater diversion and sea level rise on coastal wetland basins in Biscayne National Park. Modem mollusk distributions taken from 226 surface sites were used to determine local habitat affinities which were applied to infer past environments from mollusk distributions found in soil cores. Mollusks species compositions were found to be strongly correlated to habitat and salinity, providing reliable predictions. Wetland soils were cored to bedrock at 36locations. Mollusks were abundant throughout the cores and 15 of the 20 most abundant taxa served as bioindicators of salinity and habitat. Historic accounts coupled with mollusk based inference models indicate (1) increasing salinity levels along the coast and encroaching into the interior with mangroves communities currently migrating westward, (2) replacement of a mixed graminoid-mangrove zone by a dense monoculture of dwarf mangroves, and (3) a confinement of freshwater and freshwater graminoid marsh to landward areas between urban developments and drainage canals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.