435 resultados para Flaxseed gum
Resumo:
Drying regrowth native hardwoods to satisfactory moisture levels is a significant challenge for the processing industry. Dried quality is becoming increasingly important as sawn hardwood continues to move away from structural markets into appearance applications, but more difficult to achieve as the resource mix being processed becomes younger. An accurate, predictive drying model is a powerful tool in schedule development, decreasing the reliance on expensive, repetitive drying trials. This project updates the KilnSched drying model to allow the drying behaviour of regrowth blackbutt, jarrah, messmate, spotted gum and Victorian ash to be modeled more accurately. The effect of high temperature drying and humidity treatments on spotted gum were also investigated, as was the economics of various drying methods on spotted gum and blackbutt.
Resumo:
Three common pests (eucalypt tortoise beetle Paropsis atomaria, leaf blister sawfly Phylacteophaga froggatti and eriophyid mites) of commercial spotted gum plantations were assessed for their crown damage levels on parent and hybrid Corymbia taxa ( Corymbia torelliana, C. citriodora subsp. variegata and their hybrid) at three common-garden field sites. Damage levels differed significantly between sites for all three herbivore species, and between taxa for eriophyid mites and P. atomaria. However, herbivore response to hybridisation only differed for P. atomaria between sites, even where damage levels did not. Hybrids exhibited three common patterns of susceptibility relative to parent taxa, being most commonly intermediate to their parents for crown damage (additive resistance pattern), or no difference between parents and hybrids, or with one incidence of dominance for susceptibility.
Resumo:
Characterisation of mass transfer properties was achieved in the longitudinal, radial, and tangential directions for four Australian hardwood species: spotted gum, blackbutt, jarrah and messmate. Measurement of mass transfer properties for these species was necessary to complement current vacuum drying modelling research. Water-vapour diffusivity was determined in steady state using a specific vapometer. Permeability values of some species and material directions were extremely low and undetectable by the mass flow meter device. Hence, a custom system based on volume evolution was conceived to determine very low, previously unpublished, wood permeability values. Mass diffusivity and permeability were lowest for spotted gum and highest for messmate. Except for messmate, in the radial direction, the four species measured were less permeable in all directions than the lowest published figures, demonstrating the high impermeability of Australian hardwoods and partly accounting for their relatively slow drying rates. Premeability, water-vapour diffusivity, and associated anisotropic ratio data obtained for messmate were extreme or did not follow typical trends and is consequently the most difficult of the four woods to dry in terms of collapse and checkinng degradation.
Resumo:
Small spindleless veneer lathe technology was used to produce veneer sheets as an alternative processing option to optimise the use of small log plantation resource. Thinned (300 spha) and unthinned control (1000 spha) plantings of 10.5-year-old Corymbia citriodora ssp. variegata (CCV) and E. dunnii (Dunn’s white gum) grown in two contrasting sites from climatic regions with large annual rainfall differences were studied. Overall veneer gross recoveries ranged from 50% to 70%, which were up to 3 times higher than typical sawn green-off saw recoveries from small plantation hardwood logs of similar diameter. Major limiting factors preventing veneer from meeting higher grades were the presence of kino defects and encased knots. Splits in E. dunnii veneer also contributed to reduced grade quality. Differences between two thinning treatments for veneer properties and grade recovery were generally small. There was significant evidence of site and species differences on veneer quality. The good quality site with higher rainfall in northern New South Wales produced denser and stiffer veneers with higher grade recoveries. CCV is a superior structural veneer species with high wood density and hardness as well as very good veneer stiffness exceeding 15,000 MPa but Dunn’s white gum has also demonstrated good potential as a useful structural plywood resource. Results indicate that relatively high veneer recoveries were achieved for the sub-tropical plantation hardwoods combined with very superior mechanical properties which suggest that veneer production have suitable attributes for a range of engineered wood products including plywood and laminated veneer lumber.
Resumo:
Acacia senegal, the gum arabic producing tree, is the most important component in traditional dryland agroforestry systems in the Blue Nile region, Sudan. The aim of the present study was to provide new knowledge on the potential use of A. senegal in dryland agroforestry systems on clay soils, as well as information on tree/crop interaction, and on silvicultural and management tools, with consideration on system productivity, nutrient cycling and sustainability. Moreover, the aim was also to clarify the intra-specific variation in the performance of A. senegal and, specifically, the adaptation of trees of different origin to the clay soils of the Blue Nile region. In agroforestry systems established at the beginning of the study, tree and crop growth, water use, gum and crop yields, nutrient cycling and system performance were investigated for a period of four years (1999 to 2002). Trees were grown at 5 x 5 m and 10 x 10 m spacing alone or in mixture with sorghum or sesame; crops were also grown in sole culture. The symbiotic biological N2 fixation by A. senegal was estimated using the 15N natural abundance (δ15N) procedure in eight provenances collected from different environments and soil types of the gum arabic belt and grown in clay soil in the Blue Nile region. Balanites aegyptiaca (a non-legume) was used as a non-N-fixing reference tree species, so as to allow 15N-based estimates of the proportion of the nitrogen in trees derived from the atmosphere. In the planted acacia trees, measurements were made on shoot growth, water-use efficiency (as assessed by the δ13C method) and (starting from the third year) gum production. Carbon isotope ratios were obtained from the leaves and branch wood samples. The agroforestry system design caused no statistically significant variation in water use, but the variation was highly significant between years, and the highest water use occurred in the years with high rainfall. No statistically significant differences were found in sorghum or sesame yields when intercropping and sole crop systems were compared (yield averages were 1.54 and 1.54 ha-1 for sorghum and 0.36 and 0.42 t ha-1 for sesame in the intercropped and mono-crop plots, respectively). Thus, at an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield, but the pattern of resource capture by trees and crops may change as the system matures. Intercropping resulted in taller trees and larger basal and crown diameters as compared to the development of sole trees. It also resulted in a higher land equivalent ratio. When gum yields were analysed it was found that a significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the total gum yield in a particular year. In trees, the concentrations of N and P were higher in leaves and roots, whereas the levels of K were higher in stems, branches and roots. Soil organic matter, N, P and K contents were highest in the upper soil stratum. There was some indication that the P content slightly increased in the topsoil as the agroforestry plantations aged. At a stocking of 400 trees ha-1 (5 x 5 m spacing), A. senegal accumulated in the biomass a total of 18, 1.21, 7.8 and 972 kg ha-1of N, P, K and OC, respectively. Trees contributed ca. 217 and 1500 kg ha-1 of K and OC, respectively, to the top 25-cm of soil over the first four years of intercropping. Acacia provenances of clay plain origin showed considerable variation in seed weight. They also had the lowest average seed weight as compared to the sandy soil (western) provenances. At the experimental site in the clay soil region, the clay provenances were distinctly superior to the sand provenances in all traits studied but especially in basal diameter and crown width, thus reflecting their adaptation to the environment. Values of δ13C, indicating water use efficiency, were higher in the sand soil group as compared to the clay one, both in leaves and in branch wood. This suggests that the sand provenances (with an average value of -28.07 ) displayed conservative water use and high drought tolerance. Of the clay provenances, the local one (Bout) displayed a highly negative (-29.31 ) value, which indicates less conservative water use that resulted in high productivity at this particular clay-soil site. Water use thus appeared to correspond to the environmental conditions prevailing at the original locations for these provenances. Results suggest that A. senegal provenances from the clay part of the gum belt are adapted for a faster growth rate and higher biomass and gum productivity as compared to provenances from sand regions. A strong negative relationship was found between the per-tree gum yield and water use efficiency, as indicated by δ13C. The differences in water use and gum production were greater among provenance groups than within them, suggesting that selection among rather than within provenances would result in distinct genetic gain in gum yield. The relative δ15N values ( ) were higher in B. aegyptiaca than in the N2-fixing acacia provenances. The amount of Ndfa increased significantly with age in all provenances, indicating that A. senegal is a potentially efficient nitrogen fixer and has an important role in t agroforestry development. The total above-ground contribution of fixed N to foliage growth in 4-year-old A. senegal trees was highest in the Rahad sand-soil provenance (46.7 kg N ha-1) and lowest in the Mazmoom clay-soil provenance (28.7 kg N ha-1). This study represents the first use of the δ15N method for estimating the N input by A. senegal in the gum belt of Sudan. Key words: Acacia senegal, agroforestry, clay plain, δ13C, δ15N, gum arabic, nutrient cycling, Ndfa, Sorghum bicolor, Sesamum indicum
Resumo:
Evaluation of a series of spotted gum (Corymbia citirodora) progeny trials, established in the subtropical region of Queensland, Australia, was undertaken to provide information for the development of advanced-generation breeding populations suitable for pulp production. Measurements of growth at two ages were combined with assessments of wood density and pulp yield from a selected sample of provenances to provide comparisons between provenances, to generate genetic parameter estimates and to predict genetic gain potential. Although growth at this age was moderate relative to other eucalypts, the near-infrared predictions of average wood density of 756 kg m(-3) and pulp yield of 55% indicate the species has considerable potential as a pulpwood crop. A pulp productivity breeding objective was used to identify production populations using a range of selection trait weightings to determine potential genetic gain for pulp productivity. Genetic parameters indicated (1) levels of genetic control were moderate for all traits and higher for wood property traits, (2) genetic improvements could be achieved by selection among and within provenances with greater levels of improvement available from selection within populations, (3) genotype by environment interactions were negligible, (4) genetic correlations between traits were favourable, and (5) selection of volume production alone would maximise improvements in pulp productivity.
Resumo:
Eucalyptus argophloia Blakely (Western white gum) has shown potential as a commercial forestry timber species in marginal environments of north-eastern Australia. We measured early pollination success in Eucalyptus argophloia to compare pollination methods, determine the timing of stigma receptivity and compare fresh and stored pollen. Early pollination success was measured by counting pollen tubes in the style of E. argophloia 12 days after pollination. We compared the early pollination success of 1) Artificially Induced Protogyny (AIP), one-stop and three-stop methods of pollination; 2) flowers pollinated at 2 day intervals between 2 days before and 6 days after anthesis and 3) fresh pollen and pollen that had been stored for 9 months. Our results show significantly more pollen tubes from unpollinated AIP and AIP treatments than either the one-stop pollination or three-stop pollination treatments. This indicates that self-pollination occurs in the unpollinated AIP treatment. There was very little pollen tube growth in the one-stop method indicating that the three-stop method is the most suitable for this species. Stigma receptivity in E. argophloia commenced six days after anthesis and no pollen tube growth was observed prior to this. Fresh pollen resulted in pollen tube growth in the style whereas the stored pollen resulted in a total absence of pollen tube growth. We recommend that breeding programs incorporating E. argophloia as a female parent use the three-stop pollination method, and controlled pollination be carried out at least six days after anthesis using fresh pollen.
Resumo:
The present study examines patterns of heritability of plant secondary metabolites following hybridisation among three genetically homogeneous taxa of spotted gum (Corymbia henryi (S.T.Blake) K.D.Hill & L.A.S.Johnson, C. citriodora subsp. variegata (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora (Hook.) K.D.Hill & L.A.S.Johnson subsp. citriodora (section Maculatae), and their congener C. torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson (section Torellianae)). Hexane extracts of leaves of all four parent taxa were statistically distinguishable (ANOSIM: global R = 0.976, P = 0.008). Hybridisation patterns varied among the taxa studied, with the hybrid formed with C. citriodora subsp. variegata showing an intermediate extractive profile between its parents, whereas the profiles of the other two hybrids were dominated by that of C. torelliana. These different patterns in plant secondary-metabolite inheritance may have implications for a range of plant-insect interactions.
Resumo:
Differences in morphology have provided a basis for detecting natural interspecific hybridisation in forest trees for decades but have come to prominence again more recently as a means for directly measuring gene flow from planted forests. Here we examined the utility of seedling morphology for hybrid discrimination in three hybrid groups relevant to the monitoring of gene flow from plantings of Corymbia (L.D. Pryor & L.A.S. Johnson ex Brooker) taxa in subtropical Australia. Thirty leaf and stem characters were assessed on 907 8-month old seedlings from four parental and six hybrid taxa grown in a common garden. Outbred F1 hybrids between spotted gums (Corymbia citriodora subspecies variegata, C. citriodora subspecies citriodora and Corymbia henryi) tended to more closely resemble their maternal Corymbia torelliana parent and the most discriminating characters were the ratio of blade length to maximum perpendicular width, the presence or absence of a lignotuber, and specific leaf weight. Assignment of individuals into genealogical classes based on a multivariate model limited to a set of the more discriminating and independent characters was highest in the hybrid group, where parental taxa were genetically most divergent. Overall power to resolve among outbred F1 hybrids from both parental taxa was low to moderate, but this may not be a limitation to its likely major application of identifying hybrids in seedlots from native spotted gum stands. Advanced generation hybrids (outbred F2 and outbred backcrosses) were more difficult to resolve reliably due to the higher variances of hybrid taxa and the tendency of backcrosses to resemble their recurrent parents. Visual assessments of seedling morphology may provide a filter allowing screening of the large numbers needed to monitor gene flow, but will need to be combined with other hybrid detection methods to ensure hybrids are detected.
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.
Resumo:
Species delineation in the spotted gum complex was revisited focusing on Corymbia maculata. This study expands the range of C. maculata analysed with microsatellite markers to include populations from the north of the species range. It supported earlier findings that it is a cohesive genetic entity, well resolved from northern spotted gum taxa, Corymbia citriodora and Corymbia henryi; and inferences that its insularity is due to early lineage divergence and historical isolation. The northern extent of C. maculata sampled, as defined by chloroplast and nuclear genomes predominantly of C. maculata character, was the location of Kiwarrak, south of the Manning River near Taree in New South Wales. Trees from a recognised intergrade zone at the Yarratt locality, around 26 km north of Kiwarrak, also possessed a uniquely C. maculata chloroplast haplotype, but their nuclear genomes were predominantly of northern taxa ancestry. Range expansion of northern taxa leading to southerly gene movement into populations formerly C. maculata, would account for this apparent instance of chloroplast capture. Two subpopulations were identified in C. maculata, a northern population of which the Ourimbah locality was the most southerly studied, and a southern population of which Wingello was the most northerly locality studied. Diminished levels of northern taxa ancestry, i.e. C. citriodora or C. henryi, in individuals from the southern, relative to the northern subpopulation of C. maculata, suggested that secondary contact with northern taxa contributes to its substructure.
Resumo:
The exotic rust pathogen Puccinia psidii is now widespread along the east coast of Australia from temperate Victoria to tropical far north Queensland, with a current host range exceeding 200 species from 37 myrtaceous genera. To determine the threat P. psidii poses to plantation and native eucalypts, artificial inoculation was used to screen germplasm of spotted gum (Corymbia spp.) for resistance to the biotype of P. psidii that has become established in Australia. The objective was to characterize resistance to P. psidii within the Corymbia species complex so that management strategies for the deployment of germplasm from existing breeding programmes of these spotted gum species could be developed. Symptom development initiated 7 days after inoculation, with resistant and susceptible seedlings identified within all species, provenances and families. Inter- and intraspecific variability in rust resistance was observed among spotted gum species. There was no apparent relationship between climatic conditions at the provenance origin and disease resistance. The heritability estimates for all assessments are moderate to high and indicate a significant level of additive genetic variance for rust resistance within the populations. The results of this study clearly identify potential to select for resistance at the family level within the tested populations. While the potential for P. psidii to detrimentally impact upon Corymbia in the nursery and in young plantations was demonstrated, estimations of the heritability of resistance suggest that efforts to enhance this trait through breeding have reasonable prospects for success.
Resumo:
Identifying processing strategies and products that suit young plantation hardwoods has proved challenging with low product recoveries and/or unmarketable products being the outcome of many trials. The production of rotary veneer has been demonstrated as an effective method for converting plantation hardwood trees. Across nine processing studies that included six different plantation species (Dunn’s white gum, spotted gum, Gympie messmate, spotted gum hybrid, red mahogany and western white gum), simple spindleless lathe technology was used to process 914 veneer billets totally 37.4 m3.
Resumo:
Acetaminophen (paracetamol) is available in a wide range of oral formulations designed to meet the needs of the population across the age-spectrum, but for people with impaired swallowing, i.e. dysphagia, both solid and liquid medications can be difficult to swallow without modification. The effect of a commercial polysaccharide thickener, designed to be added to fluids to promote safe swallowing by dysphagic patients, on rheology and acetaminophen dissolution was tested using crushed immediate-release tablets in water, effervescent tablets in water, elixir and suspension. The inclusion of the thickener, comprised of xanthan gum and maltodextrin, had a considerable impact on dissolution; acetaminophen release from modified medications reached 12-50% in 30 minutes, which did not reflect the pharmacopeia specification for immediate release preparations. Flow curves reflect the high zero-shear viscosity and the apparent yield stress of the thickened products. The weak gel nature, in combination with high G’ values compared to G” (viscoelasticity) and high apparent yield stress, impact drug release. The restriction on drug release from these formulations is not influenced by the theoretical state of the drug (dissolved or dispersed), and the approach typically used in clinical practice (mixing crushed tablets into pre-prepared thickened fluid) cannot be improved by altering the order of incorporation or mixing method.
Resumo:
Processing Australian hardwood plantations into rotary veneer can produce more acceptable marketable product recoveries compared to traditional processing techniques (e.g. sawmilling). Veneers resulting from processing trials from six commercially important Australian hardwood species were dominated by D-grade veneer. Defects such as encased knots, gum pockets, gum veins, surface roughness, splits, bark pockets, and decay impacted the final assigned grade. Four grading scenarios were adopted. The first included a change to the grade limitations for gum pockets and gum veins, while the second investigated the potential impact of effective pruning on grade recovery. Although both scenarios individually had a positive impact on achieving higher face grade veneer qualities, the third and fourth scenarios, which combined both, had a substantial impact, with relative veneer values increasing up to 18.2% using conservative calculations (scenario three) or up to 22.6% (scenario four) where some of the upgraded veneers were further upgraded to A-grade, which attracts superior value. The total change in veneer value was found to depend on the average billet diameter unless defects other than those relating to the scenarios (gum or knots) restricted the benefit of pruning and gum upgrading. This was the case for species prone to high levels of growth stress and related defects.