932 resultados para Flat saw boards
Resumo:
Single crystal X-ray diffraction studies show that the three designed tripeptides Boc-Leu-Aib-m-NA-NO2 (I), Boc-Phe-Aib-m-NA-NO2 (II) and Boc-Pro-Aib-m-ABA-OMe (III) (Aib, -aminoisobutyric acid; m-NA, m-nitroaniline; m-ABA, m-aminobenzoic acid; Boc, t-butyloxycarbonyl) containing aromatic rings in the backbones adopt -turn structures that are self-assembled through intermolecular hydrogen bonds and van der Waals interactions to create layers of -sheets. Solvent-dependent NMR titration and CD studies show that the -turn structures of the peptides also exist in the solution phase. The field emission scanning electron microscopic and transmission electron microscopic images of the peptides in the solid state reveal fibrillar structures of flat morphology that are formed through -sheet mediated self-assembly of the preorganised -turn building blocks.
Resumo:
The high thermal storage capacity of phase change material (PCM) can reduce energy consumption in buildings through energy storage and release when combined with renewable energy sources, night cooling, etc. PCM boards can be used to absorb heat gains during daytime and release heat at night. In this paper, the thermal performance of an environmental chamber fitted with phase change material boards has been investigated. During a full-cycle experiment, i.e. charging–releasing cycle, the PCM boards on a wall can reduce the interior wall surface temperature during the charging process, whereas the PCM wall surface temperature is higher than that of the other walls during the heat releasing process. It is found that the heat flux density of the PCM wall in the melting zone is almost twice as large as that of ordinary wall. Also, the heat-insulation performance of a PCM wall is better than that of an ordinary wall during the charging process, while during the heat discharging process, the PCM wall releases more heat energy. The convective heat transfer coefficient of PCM wall surface calculated using equations for a normal wall material produces an underestimation of this coefficient. The high convective heat transfer coefficient for a PCM wall is due to the increased energy exchange between the wall and indoor air.
Resumo:
Flat Phase PID Controllers have the property that the phase of the transfer function round the associated feedback loop is constant or flat around the design frequency, with the aim that the phase margin and overshoot to a step response is unaffected when the gain of the device under control changes. Such designs have been achieved using Bode Integrals and by ensuring the phase is the same at two frequencies. This paper extends the ‘two frequency’ controller and describes a novel three frequency controller. The different design strategies arc compared.
Resumo:
We study the equilibrium morphology of droplets of symmetric AB diblock copolymer on a flat substrate. Using self-consistent field theory (SCFT), we provide the first predictions for the equilibrium droplet shape and its internal structure. When the sustrate affinity for the A component, $\eta_A$, is small, the droplet adopts a nearly spherical shape much like that of simple fluids. Inside the spherical droplet, however, concentric circular lamellar layers stack on top of each other; hence the thickness of the droplet is effectively quantized by a half-integer or integer number of layers. At larger $\eta_A$ and smaller contact angle, the area of the upper-most layer becomes relatively large, resulting in a nearly flat, faceted top surface, followed by a semi-spherical slope. This geometry is remarkably reminiscent of the droplet shapes observed with smetic liquid crystals.
Resumo:
This paper addresses the statistical mechanics of ideal polymer chains next to a hard wall. The principal quantity of interest, from which all monomer densities can be calculated, is the partition function, G N(z) , for a chain of N discrete monomers with one end fixed a distance z from the wall. It is well accepted that in the limit of infinite N , G N(z) satisfies the diffusion equation with the Dirichlet boundary condition, G N(0) = 0 , unless the wall possesses a sufficient attraction, in which case the Robin boundary condition, G N(0) = - x G N ′(0) , applies with a positive coefficient, x . Here we investigate the leading N -1/2 correction, D G N(z) . Prior to the adsorption threshold, D G N(z) is found to involve two distinct parts: a Gaussian correction (for z <~Unknown control sequence '\lesssim' aN 1/2 with a model-dependent amplitude, A , and a proximal-layer correction (for z <~Unknown control sequence '\lesssim' a described by a model-dependent function, B(z).