900 resultados para Finite-elements method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dissertation is concerned with the determination of the magnetic field distribution in ma[.rnetic electron lenses by means of the finite element method. In the differential form of this method a Poisson type equation is solved by numerical methods over a finite boundary. Previous methods of adapting this procedure to the requirements of digital computers have restricted its use to computers of extremely large core size. It is shown that by reformulating the boundary conditions, a considerable reduction in core store can be achieved for a given accuracy of field distribution. The magnetic field distribution of a lens may also be calculated by the integral form of the finite element rnethod. This eliminates boundary problems mentioned but introduces other difficulties. After a careful analysis of both methods it has proved possible to combine the advantages of both in a .new approach to the problem which may be called the 'differential-integral' finite element method. The application of this method to the determination of the magnetic field distribution of some new types of magnetic lenses is described. In the course of the work considerable re-programming of standard programs was necessary in order to reduce the core store requirements to a minimum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis demonstrates that the use of finite elements need not be confined to space alone, but that they may also be used in the time domain, It is shown that finite element methods may be used successfully to obtain the response of systems to applied forces, including, for example, the accelerations in a tall structure subjected to an earthquake shock. It is further demonstrated that at least one of these methods may be considered to be a practical alternative to more usual methods of solution. A detailed investigation of the accuracy and stability of finite element solutions is included, and methods of applications to both single- and multi-degree of freedom systems are described. Solutions using two different temporal finite elements are compared with those obtained by conventional methods, and a comparison of computation times for the different methods is given. The application of finite element methods to distributed systems is described, using both separate discretizations in space and time, and a combined space-time discretization. The inclusion of both viscous and hysteretic damping is shown to add little to the difficulty of the solution. Temporal finite elements are also seen to be of considerable interest when applied to non-linear systems, both when the system parameters are time-dependent and also when they are functions of displacement. Solutions are given for many different examples, and the computer programs used for the finite element methods are included in an Appendix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been considerable interest in solving viscoelastic problems in 3D particularly with the improvement in modern computing power. In many applications the emphasis has been on economical algorithms which can cope with the extra complexity that the third dimension brings. Storage and computer time are of the essence. The advantage of the finite volume formulation is that a large amount of memory space is not required. Iterative methods rather than direct methods can be used to solve the resulting linear systems efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microtubules are long, filamentous protein complexes which play a central role in several cellular physiological processes, such as cell division transport and locomotion. Their mechanical properties are extremely important since they determine the biological function. In a recently published experiment [Phys. Rev. Lett. 89 (2002) 248101], microtubule's Young's and shear moduli were simultaneously measured, proving that they are highly anisotropic. Together with the known structure, this finding opens the way to better understand and predict their mechanical behavior under a particular set of conditions. In the present study, we modeled microtubules by using the finite elements method and analyzed their oscillation modes. The analysis revealed that oscillation modes involving a change in the diameter of the microtubules strongly depend on the shear modulus. In these modes, the correlation times of the movements are just slightly shorter than diffusion times of free molecules surrounding the microtubule. It could be therefore speculated that the matching of the two timescales could play a role in facilitating the interactions between microtubules and MT associated proteins, and between microtubules and tubulins themselves.