934 resultados para Finite volume method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general three-dimensional model is developed for simulation of the growth process of silicon single crystals by Czochralski technique. The numerical scheme is based on the curvilinear non-orthogonal finite volume discretization. Numerical solutions show that the flow and temperature fields in the melt are asymmetric and unsteady for 8’’ silicon growth. The effects of rotation of crystal on the flow structure are studied. The rotation of crystal forms the Ekman layer in which the temperature gradient along solid/melt surface is small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from the second-order finite volume scheme,though numerical value perturbation of the cell facial fluxes, the perturbational finite volume (PFV) scheme of the Navier-Stokes (NS) equations for compressible flow is developed in this paper. The central PFV scheme is used to compute the one-dimensional NS equations with shock wave.Numerical results show that the PFV scheme can obtain essentially non-oscillatory solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.