948 resultados para Finite state machine
Resumo:
Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.
This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.
This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.
The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.
The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.
Resumo:
Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.
Resumo:
Esta dissertação investiga a aplicação dos algoritmos evolucionários inspirados na computação quântica na síntese de circuitos sequenciais. Os sistemas digitais sequenciais representam uma classe de circuitos que é capaz de executar operações em uma determinada sequência. Nos circuitos sequenciais, os valores dos sinais de saída dependem não só dos valores dos sinais de entrada como também do estado atual do sistema. Os requisitos cada vez mais exigentes quanto à funcionalidade e ao desempenho dos sistemas digitais exigem projetos cada vez mais eficientes. O projeto destes circuitos, quando executado de forma manual, se tornou demorado e, com isso, a importância das ferramentas para a síntese automática de circuitos cresceu rapidamente. Estas ferramentas conhecidas como ECAD (Electronic Computer-Aided Design) são programas de computador normalmente baseados em heurísticas. Recentemente, os algoritmos evolucionários também começaram a ser utilizados como base para as ferramentas ECAD. Estas aplicações são referenciadas na literatura como eletrônica evolucionária. Os algoritmos mais comumente utilizados na eletrônica evolucionária são os algoritmos genéticos e a programação genética. Este trabalho apresenta um estudo da aplicação dos algoritmos evolucionários inspirados na computação quântica como uma ferramenta para a síntese automática de circuitos sequenciais. Esta classe de algoritmos utiliza os princípios da computação quântica para melhorar o desempenho dos algoritmos evolucionários. Tradicionalmente, o projeto dos circuitos sequenciais é dividido em cinco etapas principais: (i) Especificação da máquina de estados; (ii) Redução de estados; (iii) Atribuição de estados; (iv) Síntese da lógica de controle e (v) Implementação da máquina de estados. O Algoritmo Evolucionário Inspirado na Computação Quântica (AEICQ) proposto neste trabalho é utilizado na etapa de atribuição de estados. A escolha de uma atribuição de estados ótima é tratada na literatura como um problema ainda sem solução. A atribuição de estados escolhida para uma determinada máquina de estados tem um impacto direto na complexidade da sua lógica de controle. Os resultados mostram que as atribuições de estados obtidas pelo AEICQ de fato conduzem à implementação de circuitos de menor complexidade quando comparados com os circuitos gerados a partir de atribuições obtidas por outros métodos. O AEICQ e utilizado também na etapa de síntese da lógica de controle das máquinas de estados. Os circuitos evoluídos pelo AEICQ são otimizados segundo a área ocupada e o atraso de propagação. Estes circuitos são compatíveis com os circuitos obtidos por outros métodos e em alguns casos até mesmo superior em termos de área e de desempenho, sugerindo que existe um potencial de aplicação desta classe de algoritmos no projeto de circuitos eletrônicos.
Resumo:
This paper describes a trainable method for generating letter to sound rules for the Greek language, for producing the pronunciation of out-of-vocabulary words. Several approaches have been adopted over the years for grapheme-to-phoneme conversion, such as hand-seeded rules, finite state transducers, neural networks, HMMs etc, nevertheless it has been proved that the most reliable method is a rule-based one. Our approach is based on a semi-automatically pre-transcribed lexicon, from which we derived rules for automatic transcription. The efficiency and robustness of our method are proved by experiments on out-of-vocabulary words which resulted in over than 98% accuracy on a word-base criterion.
Resumo:
Language models (LMs) are often constructed by building multiple individual component models that are combined using context independent interpolation weights. By tuning these weights, using either perplexity or discriminative approaches, it is possible to adapt LMs to a particular task. This paper investigates the use of context dependent weighting in both interpolation and test-time adaptation of language models. Depending on the previous word contexts, a discrete history weighting function is used to adjust the contribution from each component model. As this dramatically increases the number of parameters to estimate, robust weight estimation schemes are required. Several approaches are described in this paper. The first approach is based on MAP estimation where interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data to ensure robust estimation of LM interpolation weights. This can also serve as a smoothing prior for MAP adaptation. A normalized perplexity metric is proposed to handle the bias of the standard perplexity criterion to corpus size. A range of schemes to combine weight information obtained from training data and test data hypotheses are also proposed to improve robustness during context dependent LM adaptation. In addition, a minimum Bayes' risk (MBR) based discriminative training scheme is also proposed. An efficient weighted finite state transducer (WFST) decoding algorithm for context dependent interpolation is also presented. The proposed technique was evaluated using a state-of-the-art Mandarin Chinese broadcast speech transcription task. Character error rate (CER) reductions up to 7.3 relative were obtained as well as consistent perplexity improvements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A technique is presented for ascertaining when a (finite-state) partial process specification is adequate, in the sense of being specified enough, for contexts in which it is to be used. The method relies on the automatic generation of a modal formula from the partial specification; if the remainder of the network satisfies this formula, then any process that meets the specification is guaranteed to ensure correct behavior of the overall system. Using the results, the authors develop compositional proof rules for establishing the correctness of networks of parallel processes and illustrate their use with several examples
Resumo:
分析有限状态进程互模拟等价判定技术,探讨了诊断公式的生成问题。给出了将有限状态进程转化为带标号的迁移系统,修改了Paige和Trajan求解最粗划分的算法,使其适用于带标号的迁移系统。给出生成Hennessy-Milner逻辑描述的诊断公式的算法,当两个进程不能互模拟时,产生两个诊断公式。算法的时间复杂度为O(mlogn),空间复杂度为O(m+n)。
Resumo:
基于多智能体系统理论,研讨在非结构,不确定环境下面向复杂任务的多机器人分布式协调系统的实现原理,方法和技术。提出的递阶混合式协调结构,基于网络的通讯模式和基于有限状态机的规划与控制集成方法,充分考虑了复杂任务和真实自然环境的特点,通过构建一个全实物的多移动机器人实验平台,对规划,控制,传感,通讯,协调与合作的各关键技术进行了开发和集成,使多机器人分布式协调技术的研究直接面向实际应用,编队和物料搬运的演示实验结果展示了多机器人协调技术的广阔应用前景。
Resumo:
In Phys. Rev. Letters (73:2), Mantegna et al. conclude on the basis of Zipf rank frequency data that noncoding DNA sequence regions are more like natural languages than coding regions. We argue on the contrary that an empirical fit to Zipf"s "law" cannot be used as a criterion for similarity to natural languages. Although DNA is a presumably "organized system of signs" in Mandelbrot"s (1961) sense, and observation of statistical featurs of the sort presented in the Mantegna et al. paper does not shed light on the similarity between DNA's "gramar" and natural language grammars, just as the observation of exact Zipf-like behavior cannot distinguish between the underlying processes of tossing an M-sided die or a finite-state branching process.
Resumo:
This thesis presents a new high level robot programming system. The programming system can be used to construct strategies consisting of compliant motions, in which a moving robot slides along obstacles in its environment. The programming system is referred to as high level because the user is spared of many robot-level details, such as the specification of conditional tests, motion termination conditions, and compliance parameters. Instead, the user specifies task-level information, including a geometric model of the robot and its environment. The user may also have to specify some suggested motions. There are two main system components. The first component is an interactive teaching system which accepts motion commands from a user and attempts to build a compliant motion strategy using the specified motions as building blocks. The second component is an autonomous compliant motion planner, which is intended to spare the user from dealing with "simple" problems. The planner simplifies the representation of the environment by decomposing the configuration space of the robot into a finite state space, whose states are vertices, edges, faces, and combinations thereof. States are inked to each other by arcs, which represent reliable compliant motions. Using best first search, states are expanded until a strategy is found from the start state to a global state. This component represents one of the first implemented compliant motion planners. The programming system has been implemented on a Symbolics 3600 computer, and tested on several examples. One of the resulting compliant motion strategies was successfully executed on an IBM 7565 robot manipulator.
Resumo:
A study is made of the recognition and transformation of figures by iterative arrays of finite state automata. A figure is a finite rectangular two-dimensional array of symbols. The iterative arrays considered are also finite, rectangular, and two-dimensional. The automata comprising any given array are called cells and are assumed to be isomorphic and to operate synchronously with the state of a cell at time t+1 being a function of the states of it and its four nearest neighbors at time t. At time t=0 each cell is placed in one of a fixed number of initial states. The pattern of initial states thus introduced represents the figure to be processed. The resulting sequence of array states represents a computation based on the input figure. If one waits for a specially designated cell to indicate acceptance or rejection of the figure, the array is said to be working on a recognition problem. If one waits for the array to come to a stable configuration representing an output figure, the array is said to be working on a transformation problem.
Resumo:
A communication system model for mutual information performance analysis of multiple-symbol differential M-phase shift keying over time-correlated, time-varying flat-fading communication channels is developed. This model is a finite-state Markov (FSM) equivalent channel representing the cascade of the differential encoder, FSM channel model and differential decoder. A state-space approach is used to model channel phase time correlations. The equivalent model falls in a class that facilitates the use of the forward backward algorithm, enabling the important information theoretic results to be evaluated. Using such a model, one is able to calculate mutual information for differential detection over time-varying fading channels with an essentially finite time set of correlations, including the Clarke fading channel. Using the equivalent channel, it is proved and corroborated by simulations that multiple-symbol differential detection preserves the channel information capacity when the observation interval approaches infinity.
Resumo:
The finite state Markov-chain approximation methods developed by Tauchen (1986) and Tauchen and Hussey (1991) are widely used in economics, finance and econometrics to solve functional equations in which state variables follow autoregressive processes. For highly persistent processes, the methods require a large number of discrete values for the state variables to produce close approximations which leads to an undesirable reduction in computational speed, especially in a multivariate case. This paper proposes an alternative method of discretizing multivariate autoregressive processes. This method can be treated as an extension of Rouwenhorst's (1995) method which, according to our finding, outperforms the existing methods in the scalar case for highly persistent processes. The new method works well as an approximation that is much more robust to the number of discrete values for a wide range of the parameter space.
Resumo:
A scalable large vocabulary, speaker independent speech recognition system is being developed using Hidden Markov Models (HMMs) for acoustic modeling and a Weighted Finite State Transducer (WFST) to compile sentence, word, and phoneme models. The system comprises a software backend search and an FPGA-based Gaussian calculation which are covered here. In this paper, we present an efficient pipelined design implemented both as an embedded peripheral and as a scalable, parallel hardware accelerator. Both architectures have been implemented on an Alpha Data XRC-5T1, reconfigurable computer housing a Virtex 5 SX95T FPGA. The core has been tested and is capable of calculating a full set of Gaussian results from 3825 acoustic models in 9.03 ms which coupled with a backend search of 5000 words has provided an accuracy of over 80%. Parallel implementations have been designed with up to 32 cores and have been successfully implemented with a clock frequency of 133?MHz.
Resumo:
To cope with the rapid growth of multimedia applications that requires dynamic levels of quality of service (QoS), cross-layer (CL) design, where multiple protocol layers are jointly combined, has been considered to provide diverse QoS provisions for mobile multimedia networks. However, there is a lack of a general mathematical framework to model such CL scheme in wireless networks with different types of multimedia classes. In this paper, to overcome this shortcoming, we therefore propose a novel CL design for integrated real-time/non-real-time traffic with strict preemptive priority via a finite-state Markov chain. The main strategy of the CL scheme is to design a Markov model by explicitly including adaptive modulation and coding at the physical layer, queuing at the data link layer, and the bursty nature of multimedia traffic classes at the application layer. Utilizing this Markov model, several important performance metrics in terms of packet loss rate, delay, and throughput are examined. In addition, our proposed framework is exploited in various multimedia applications, for example, the end-to-end real-time video streaming and CL optimization, which require the priority-based QoS adaptation for different applications. More importantly, the CL framework reveals important guidelines as to optimize the network performance