965 resultados para Fiber materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compressive and flexural properties of hemp fiber reinforced concretes (FRC) were examined in this paper. Natural hemp fiber was mixed using dry and wet mixing methods to fabricate the FRC. Mechanical properties of the FRC were investigated. The main factors affecting compressive and flexural properties of the FRC materials were evaluated with an orthogonal test design. Fiber content by weight has the largest effect. The method for casting hemp FRC has been optimised. Under the optimum conditions, compressive strength increased by 4 %, flexural strength increased by 9 %, flexural toughness increased by 144 %, and flexural toughness index increased by 214 %.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites’ flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a theoretical approach to compare two types of fiber reinforced composite materials for femoral component of hip implants. The natural fiber reinforced composite implant is compared with carbon fiber reinforced composite and the results are evaluated against the control solution of a metallic implant made of titanium alloy. With identical geometry and loading condition, the composite implants assumed lower stresses, thus induced more loads to the bone and consequently reduced the risk of stress shielding, whilst the natural fiber reinforced composite showed promising result compared with carbon fibers. However, natural fibers, as well as carbon fibers, lack the power to improve interface debonding due to excessive loads in interface. Nevertheless, natural fiber reinforced composite could be an appropriate alternative given its capability of tailoring and achieving the optimal fiber orientation and robust design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main challenges in the manufacture of composite materials are low surface energy and the presence of silicon-containing contaminants, both of which greatly reduce surface adhesive strength. In this study, carbon fiber (CF) and E-glass epoxy resin composites were surface treated with the Accelerated Thermo-molecular adhesion Process (ATmaP). ATmaP is a multiaction surface treatment process where tailored nitrogen and oxygen functionalities are generated on the surface of the sample through the vaporization and atomization of n-methylpyrrolidone solution, injected via specially designed flame-treatment equipment. The treated surfaces of the polymer composites were analyzed using XPS, time of flight secondary ion mass spectrometry (ToF-SIMS), contact angle (CA) analysis and direct adhesion measurements. ATmaP treatment increased the surface concentration of polar functional groups while reducing surface contamination, resulting in increased adhesion strength. XPS and ToF-SIMS showed a significant decrease in silicon-containing species on the surface after ATmaP treatment. E-glass composite showed higher adhesion strength than CF composite, correlating with higher surface energy, higher concentrations of nitrogen and CO functional groups (from XPS) and higher concentrations of oxygen and nitrogen-containing functional groups (particularly C2H3O+ and C2H5NO+ molecular ions, from ToF-SIMS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological properties of supramolecular soft functional materials are determined by the networks within the materials. This research reveals for the first time that the volume confinement during the formation of supramolecular soft functional materials will exert a significant impact on the rheological properties of the materials. A class of small molecular organogels formed by the gelation of N-lauroyl-L-glutamic acid din-butylamide (GP-1) in ethylene glycol (EG) and propylene glycol (PG) solutions were adopted as model systems for this study. It follows that within a confined space, the elasticity of the gel can be enhanced more than 15 times compared with those under un-restricted conditions. According to our optical microscopy observations and rheological measurements, this drastic enhancement is caused by the structural transition from a multi-domain network system to a single network system once the average size of the fiber network of a given material reaches the lowest dimension of the system. The understanding acquired from this work will provide a novel strategy to manipulate the network structure of soft materials, and exert a direct impact on the micro-engineering of such supramolecular materials in micro and nano scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of fiber networks and the resulting rheological properties of supramolecular soft materials are dramatically influenced when the volume of the system is reduced to a threshold. Unlike un-confined systems, the formation of fiber networks under volume confinement is independent of temperature and solute concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach of engineering of molecular gels was established on the basis of a nucleation-initiated network formation mechanism. A variety of gel network structures can be obtained by regulating the starting temperature of the sol−gel transition. This enables us to tune the network from the spherulitic domains pattern to the extensively interconnected fibrillar network. As the consequence of fibrous network structure turning, desirable rheological and other in-use properties of the materials can be obtained accordingly. This approach of micro-/nanostructural fabrication may open up a new route for micro-/nanofunctional materials engineering in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new generic strategy to fabricate nanoparticles in the “cages” within the fibrous networks of supramolecular soft materials. As the cages can be acquired by a design-and-production manner, the size of nanoparticles synthesized within the cages can be tuned accordingly. To implement this idea, both selenium and silver were chosen for the detailed investigation. It follows that the sizes of selenium and silver nanoparticles can be controlled by tuning the pore size of the fiber networks in the material. When the concentration of the gelator is high enough, monodisperse nanoparticles can be prepared. More interestingly, the morphology of the nanoparticles can be altered: silver disks can be formed when the concentrations of both the gelator and silver nitrate are sufficiently low. As the fiber network serves as a physical barrier and semisolid support for the nanoparticles, the stability in the aqueous media and the ease of application of these nanoparticles can be substantially enhanced. This robust surfactant-free approach will not only allow the controlled fabrication of nanoparticles, but also can be applied to the fabrication of composite materials for robust applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article gives an overview of the current progress of a class of supramolecular soft materials consisting of fiber networks and the trapped liquid. After discussing the up-to-date knowledge on the types of fiber networks and the correlation to the rheological properties, the gelation mechanism turns out to be one of the key subjects for this review. In this concern, the following two aspects will be focused upon: the single fiber network formation and the multi-domain fiber network formation of this type of material. Concerning the fiber network formation, taking place via nucleation, and the nucleation-mediated growth and branching mechanism, the theoretical basis of crystallographic mismatch nucleation that governs fiber branching and formation of three-dimensional fiber networks is presented. In connection to the multi-domain fiber network formation, which is governed by the primary nucleation and the subsequent formation of single fiber networks from nucleation centers, the control of the primary nucleation rate will be considered. Based on the understanding on the the gelation mechanism, the engineering strategies of soft functional materials of this type will be systematically discussed. These include the control of the nucleation and branching-controlled fiber network formation in terms of tuning the thermodynamic driving force of the gelling system and introducing suitable additives, as well as introducing ultrasound. Finally, a summary and the outlook of future research on the basis of the nucleation-growth-controlled fiber network formation are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional fiber networks were created from an organogel system consisting mainly of elongated fibrils by using a nonionic surfactant as an additive. The presence of the surfactant molecules manipulates the network structure by enhancing the mismatch nucleation on the growing fiber tips. Both the fiber network structure and the rheological properties of the material can be finely tuned by changing the surfactant concentration, which provides a robust approach to the engineering of supramolecular soft functional materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, some of our recent results in microstructure, texture and orientation relationship resulting from the application of an external high magnetic field during diffusional and non-diffusional phase transformation in both steel and functional metallic materials have been summarized. A 12-T magnetic field was applied to the diffusional decomposition of austenite in 0.81C-Fe alloy and martensitic transformation of a Ni-Mn-Ga magnetic shape memory alloy. For the 0.81C-Fe alloy, it was found that the magnetic field induces the formation of proeutectoid ferrite and slightly enhances the <001> fiber component in ferrite in the transverse field direction. The magnetic dipolar interaction between Fe atoms in the transverse field direction accounts for this phenomenon. The magnetic field favors the formation of pearlite with Pitsch-Petch 2 (P-P 2) and Isaichev (IS) orientation relationships (OR) between the lamellar ferrite and cementite. For the Ni-Mn-Ga magnetic shape memory alloy, the magnetic field makes the martensite lamellas to grow in some specific directions with their c-axes [001] orientated to the field direction and transverse field direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological properties of a hierarchically structured supramolecular soft material are mainly determined by the structure of its network. Controlling the thermodynamic driving force of physical gels (one type of such materials) during the formation has proven effective in manipulating the network structure due to the nature of nucleation and growth of the fiber network formation in such a supramolecular soft material. Nevertheless, it is shown in this study that such a property can be dramatically influenced when the volume of the system is reduced to below a threshold value. Unlike un-confined systems, the network structure of such a soft material formed under volume confinement contains a constant network size, independent of the experimental conditions, i.e. temperature and solute concentration. This implies that the size of the fiber networks in such a material is invariable and free from the influence of external factors, once the volume is reduced to a threshold. The observations of this work are significant in the control of the formation of fibrous networks in materials of this type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.