912 resultados para Fiber bundle
Resumo:
Abstract Background: Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). Objective: To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Methods: Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution’s ethics committee. Results: The patients’ mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). Conclusion: The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB.
Resumo:
Die Arbeit zeichnet die Verbreitung des Bibers (Castor fiber LINNEAUS 1758) im Biosphärenreservat Oberlausitzer Heide- und Teichlandschaft für das Jahr 2014 nach. Auf Grundlage der zwei wöchigen Feldarbeit im Februar 2014 wurden Aktivitätsspuren gesichtet und mit einem GPS Gerät registriert und fotografisch dokumentiert. Daraus werden Verbreitungskarten mit genauer Lage und Umfang der einzelnen Reviere dargestellt. Insgesamt wurden sieben Reviere entdeckt. Davon befinden sich vier Reviere an der Spree und ein Revier am Schwarzen Schöps. Die restlichen zwei Reviere wurden in Teichgruppen, die sich in der unmittelbaren Nähe der Spree befinden, verzeichnet. Des Weiteren erfolgte der Kontakt zu unterschiedlichen Akteuren die sich mit der Verbreitung des Bibers in Ost-Sachsen befassen. Zu den ermittelten Ergebnissen wurden die anderen Standorte eingebunden und kartografisch in einer Verbreitungskarte dargestellt.
Resumo:
Diffusion MRI is a well established imaging modality providing a powerful way to probe the structure of the white matter non-invasively. Despite its potential, the intrinsic long scan times of these sequences have hampered their use in clinical practice. For this reason, a large variety of methods have been recently proposed to shorten the acquisition times. Among them, spherical deconvolution approaches have gained a lot of interest for their ability to reliably recover the intra-voxel fiber configuration with a relatively small number of data samples. To overcome the intrinsic instabilities of deconvolution, these methods use regularization schemes generally based on the assumption that the fiber orientation distribution (FOD) to be recovered in each voxel is sparse. The well known Constrained Spherical Deconvolution (CSD) approach resorts to Tikhonov regularization, based on an ℓ(2)-norm prior, which promotes a weak version of sparsity. Also, in the last few years compressed sensing has been advocated to further accelerate the acquisitions and ℓ(1)-norm minimization is generally employed as a means to promote sparsity in the recovered FODs. In this paper, we provide evidence that the use of an ℓ(1)-norm prior to regularize this class of problems is somewhat inconsistent with the fact that the fiber compartments all sum up to unity. To overcome this ℓ(1) inconsistency while simultaneously exploiting sparsity more optimally than through an ℓ(2) prior, we reformulate the reconstruction problem as a constrained formulation between a data term and a sparsity prior consisting in an explicit bound on the ℓ(0)norm of the FOD, i.e. on the number of fibers. The method has been tested both on synthetic and real data. Experimental results show that the proposed ℓ(0) formulation significantly reduces modeling errors compared to the state-of-the-art ℓ(2) and ℓ(1) regularization approaches.
Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI.
Resumo:
Validation is arguably the bottleneck in the diffusion magnetic resonance imaging (MRI) community. This paper evaluates and compares 20 algorithms for recovering the local intra-voxel fiber structure from diffusion MRI data and is based on the results of the "HARDI reconstruction challenge" organized in the context of the "ISBI 2012" conference. Evaluated methods encompass a mixture of classical techniques well known in the literature such as diffusion tensor, Q-Ball and diffusion spectrum imaging, algorithms inspired by the recent theory of compressed sensing and also brand new approaches proposed for the first time at this contest. To quantitatively compare the methods under controlled conditions, two datasets with known ground-truth were synthetically generated and two main criteria were used to evaluate the quality of the reconstructions in every voxel: correct assessment of the number of fiber populations and angular accuracy in their orientation. This comparative study investigates the behavior of every algorithm with varying experimental conditions and highlights strengths and weaknesses of each approach. This information can be useful not only for enhancing current algorithms and develop the next generation of reconstruction methods, but also to assist physicians in the choice of the most adequate technique for their studies.
Resumo:
Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.
Resumo:
Introduction : DTI has proven to be an exquisite biomarker of tissue microstructure integrity. This technique has been successfully applied to schizophrenia in showing that fractional anisotropy (FA, a marker of white matter integrity) is diminished in several areas of the brain (Kyriakopoulos M et al (2008)). New ways of representing diffusion data emerged recently and achieved to create structural connectivity maps in healthy brains (Hagmann P et al. (2008)). These maps have the capacity to study alterations over the entire brain at the connection and network level. This is of high interest in complex disconnection diseases like schizophrenia. We report on the specific network alterations of schizophrenic patients. Methods : 13 patients with chronic schizophrenia were recruited from in-patient, day treatment, out-patient clinics. Comparison subjects were recruited and group-matched to patients on age, sex, handedness, and parental social economic-status. This study was approved by the local IRB and subjects had to give informed written consent. They were scanned with a 3T clinical MRI scanner. DTI and high-resolution anatomical T1w imaging were performed during the same session. The path from diffusion MRI to a multi-resolution structural connection matrices of the entire brain is a five steps process that was performed in a similar way as described in Hagmann P et al. (2008). (1) DTI and T1w MRI of the brain, (2) segmentation of white and gray matter, (3) white matter tractography, (4) segmentation of the cortex into 242 ROIs of equal surface area covering the entire cortex (Fig 1), (5) the connection network was constructed by measuring for each ROI to ROI connection the related average FA along the corresponding tract. Results : For every connection between 2 ROIs of the network we tested the hypothesis H0: "average FA along fiber pathway is larger or equal in patients than in controls". H0 was rejected for connections where average FA in a connection was significantly lower in patients than in controls. Threshold p-value was 0.01 corrected for multiple comparisons with false discovery rate. We identified consistently that temporal, occipito-temporal, precuneo-temporal as well as frontal inferior and precuneo-cingulate connections were altered (Fig 2: significant connections in yellow). This is in agreement with the known literature, which showed across several studies that FA is diminished in several areas of the brain. More precisely, abnormalities were reported in the prefrontal and temporal white matter and to some extent also in the parietal and occipital regions. The alterations reported in the literature specifically included the corpus callosum, the arcuate fasciculus and the cingulum bundle, which was the case here as well. In addition small world indexes are significantly reduced in patients (p<0.01) (Fig. 3). Conclusions : Using connectome mapping to characterize differences in structural connectivity between healthy and diseased subjects we were able to show widespread connectional alterations in schizophrenia patients and systematic small worldness decrease, which is a marker of network desorganization. More generally, we described a method that has the capacity to sensitively identify structure alterations in complex disconnection syndromes where lesions are widespread throughout the connectional network.
Resumo:
Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
In response to Catani et al., we show that corticospinal pathways adhere via sharp turns to two local grid orientations; that our studies have three times the diffusion resolution of those compared; and that the noted technical concerns, including crossing angles, do not challenge the evidence of mathematically specific geometric structure. Thus, the geometric thesis gives the best account of the available evidence.
Resumo:
OBJECTIVES: The aim of this study was to evaluate new electrocardiographic (ECG) criteria for discriminating between incomplete right bundle branch block (RBBB) and the Brugada types 2 and 3 ECG patterns. BACKGROUND: Brugada syndrome can manifest as either type 2 or type 3 pattern. The latter should be distinguished from incomplete RBBB, present in 3% of the population. METHODS: Thirty-eight patients with either type 2 or type 3 Brugada pattern that were referred for an antiarrhythmic drug challenge (AAD) were included. Before AAD, 2 angles were measured from ECG leads V(1) and/or V(2) showing incomplete RBBB: 1) α, the angle between a vertical line and the downslope of the r'-wave, and 2) β, the angle between the upslope of the S-wave and the downslope of the r'-wave. Baseline angle values, alone or combined with QRS duration, were compared between patients with negative and positive results on AAD. Receiver-operating characteristic curves were constructed to identify optimal discriminative cutoff values. RESULTS: The mean β angle was significantly smaller in the 14 patients with negative results on AAD compared to the 24 patients with positive results on AAD (36 ± 20° vs. 62 ± 20°, p < 0.01). Its optimal cutoff value was 58°, which yielded a positive predictive value of 73% and a negative predictive value of 87% for conversion to type 1 pattern on AAD; α was slightly less sensitive and specific compared with β. When the angles were combined with QRS duration, it tended to improve discrimination. CONCLUSIONS: In patients with suspected Brugada syndrome, simple ECG criteria can enable discrimination between incomplete RBBB and types 2 and 3 Brugada patterns.
Resumo:
The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.
Resumo:
Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.